
Computational Modular Charater Theory

G. HISS C. JANSEN K. LUX R. PARKER

November 11, 1993





To Joahim Neub�user

and Herbert Pahlings





Aknowledgements

During the development of the MOC-system and the preparation of this

book we were supported by various mathematiians and institutions.

Above all, we wish to thank Joahim Neub�user and Herbert Pahlings

who brought us together at Aahen. Pahlings was the supervisor of the

PhD-thesis of Lux and of the Diploma thesis of Jansen, whih were on-

erned with extensions and appliations of the MOC-system. Neub�user

and Pahlings provided a great working atmosphere at their institute,

the Lehrstuhl D f�ur Mathematik, and supported our projet during the

whole time. We therefore dediate this book to them.

It is a great pleasure for us to thank H. W. Lenstra for his imme-

diate interest in a partiular number theoretial problem related to the

MOC-system, for solving this problem and for allowing us to inlude his

proof of this previously unpublished result in our book. Meinolf Gek

read a preliminary version of the manusript with great are. His various

remarks and observations onerning the theory of modular haraters

have been inorporated. Together with his detailed omments and sug-

gestions on the style of the exposition, this lead to many improvements

and added very muh to the legibility of our book. We wish to thank

him for all his work. Finally we thank Thomas Breuer for suggestions

onerning abelian number �eds.

We also gratefully aknowledge the �nanial support we reeived

from the Deutshe Forshungsgemeinshaft and from the Bundesland

Nordrhein-Westfalen in form of the Bennigsen-Foerder-Preis.





Prefae

This book introdues some new ideas for the omputer alulation of

modular haraters of �nite groups. These ideas underly the omputer

algebra system MOC, whih has been developed by the authors. Sine

there have been quite a few results obtained with the aid of MOC, it

seems appropriate to publish the onepts and algorithms on whih it is

built. The soures of the programs of this system are freely available.

Should anyone wish to use them for any purpose, apply to any of the

authors.

This book onsists of six hapters and an appendix. In the �rst hap-

ter we reall and ollet known results about modular harater tables of

�nite groups and introdue the MOC-system. In the seond hapter we

o�er a quik introdution, mostly without proofs, to the modular har-

ater theory of �nite groups. It is our intention to lead the beginner and

non-expert quikly to a state of being able to produe new results with

MOC. In Chapter 3 we desribe the omputational onepts underlying

our system. They allow us to transform the problems we are onerned

with into problems of solving systems of integral linear equations and

inequalities. These onepts are of independent interest as they an also

be applied in a generi way to the modular representation theory of �nite

groups of Lie type. In the fourth hapter we introdue some prinipal

data strutures. In partiular we suggest a new harater table format in

whih all entries are integers. We also present a previously unpublished

result due to H. W. Lenstra on ertain integral bases for abelian number

�elds. The heart of our book is the �fth hapter, where the algorithms

are introdued. Some of them should be of independent interest, for ex-

ample our algorithms for dealing with rational linear equations. Finally,

in Chapter 6 we have worked out a non-trivial example in detail, namely

the alulation of the 7-modular deomposition numbers of the double

overing group of Conway's largest group.
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In the appendix we have olleted some results obtained in the ourse

of examples throughout the book. These results inlude the 5-modular

deomposition numbers of the Conway group Co

2

, inluding the Brauer

harater table and the 7-modular deomposition numbers of 2Co

1

. Both

results are published for the �rst time.

Finally we give a bibliography, whih is not intended to be exhaustive,

of papers and monographs ited in our book and also of some related

work.

We hope that even the expert in the �eld of modular representation

theory will �nd our book interesting, beause of our di�erent point of

view|we must ompute with the objets.

Aahen, Heidelberg, Shepton Mallet

November 1993

G. H., C. J., K. L., R. P.
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Chapter 1

Introdution

1.1 Modular haraters

Representation theory is an e�etive and indispensable tool in the inves-

tigation of �nite groups. The table of ordinary irreduible haraters of a

�nite group G enodes an enormous amount of information about G. For

example, it an be used in many ases to show that G is a Galois group

over some abelian extension of the rational numbers [101℄. The beautiful

book of Isaas [70℄ gives an impression of the innumerable appliations

of harater theory.

Ordinary haraters for arbitrary �nite groups where introdued by

Frobenius in generalization of haraters of abelian groups. Frobenius

himself already alulated the harater tables of the symmetri and

alternating groups and of the simple Mathieu groups. To aomplish

this work he was led to invent the method of induing haraters [42℄.

Shur not muh later gave another proof for the harater tables of the

symmetri and alternating groups, and ontinued his investigations to

omplete the harater tables of their overing groups [112℄. The or-

dinary harater tables of the �nite simple groups of Lie type are now

almost known by the work of Deligne and Lusztig [97℄. The famous

\Atlas of Finite Groups" [19℄ ollets, among a wealth of other valuable

information, the harater tables of the most interesting �nite simple

groups up to a ertain order, in partiular those for the sporadi simple

groups.

1



2 CHAPTER 1. INTRODUCTION

Brauer started the investigation of representations of a �nite group

over a �eld whose harateristi divides the group order. In [12℄, he in-

trodued the idea of modular haraters, now alled Brauer haraters,

and the idea of deomposition numbers. The knowledge of deomposi-

tion numbers is equivalent to the knowledge of the irreduible Brauer

haraters. One of the main tasks of modular representation theory is

to �nd methods for the alulation of the deomposition numbers for a

given �nite group.

Let us mention a few of the various appliations of modular repre-

sentation theory. To begin with, it is useful for the determination of the

maximal subgroups of a group. For example, building upon Ashbaher's

subgroup theorem [2℄ and some results on modular representations of �-

nite simple groups, Kleidman and Liebek were able to determine the

maximal subgroups of most of the �nite lassial groups in [87℄. There

are also appliations outside the theory of �nite groups, for example

in geometry and ombinatoris, where �nite geometries are studied via

their automorphism groups (see for example [109℄) or in topology, where

topologial spaes are investigated via their fundamental groups (see for

example [62℄). In many potential appliations the problem an be re-

dued to the ase of the simple groups, their automorphism groups and

overing groups. These groups are known by the lassi�ation of the

�nite simple groups. It would therefore be very desirable to have a de-

sription of all irreduible Brauer haraters for this lass of groups. Suh

a large olletion of examples would doubtlessly lead to new onjetures

and theorems in representation theory and then in turn perhaps to new

and simpler ways of obtaining these Brauer haraters. As Mihler has

indiated in his survey artile [103℄, suh a olletion of modular hara-

ter tables is also extremly useful in heking various famous onjetures

of Brauer and Alperin.

1.2 Known results

Let us now desribe some of the history of the Brauer harater tables

whih are known up to the present. Brauer and Nesbitt in [12℄ already

alulated the modular irreduible haraters for the groups PSL(2; q)

in the de�ning harateristi ase, i.e., for �elds of harateristi p di-

viding q. Janko in [81℄ found the Brauer haraters for his �rst sporadi
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group J

1

in every odd harateristi and used one of the 11-modular

irreduible haraters to onstrut his group as a matrix group of de-

gree 7 over a �eld of harateristi 11. Fong in [36℄ determined the

2-deomposition numbers for this group with some ambiguities. In [71℄

James alulated all but one of the irreduible Brauer haraters for the

Mathieu groups, the only exeption being one harater in harateris-

ti 2 forM

24

. This last harater was found only muh later with the help

of the Meat-Axe [106℄. Humphreys in [65℄ and Benson in [4℄ investigated

the overing groups of the Mathieu groups. The Higman{Sims group

has been studied by Humphreys in [66℄, and Thakray in his thesis [123℄

determined the 2-modular haraters of the MLaughlin group. In [32℄

Feit introdued some new methods by utilizing Green orrespondene in

the determination of deomposition numbers, thereby alulating many

substantial examples, inluding some for the triple overing group of the

MLaughlin group and the third Janko group J

3

. Feit's methods have

been extended and led to the results of [56℄. By the ombined e�orts of

various authors the deomposition numbers are now ompletely known

for all groups appearing in the Atlas up to page 100, the largest of whih

is the MLaughlin group. These results are olleted in the �rst part of

a modular Atlas of �nite groups [82℄.

1.3 MOC

The omputer algebra system MOC (for MOdular Charaters) whih

we are going to desribe in this book has been developed by the au-

thors in order to automate some of the more elementary methods known

for alulating deomposition numbers. Parts of the material presented

here has already been skethed in [99℄. An aount of the methods we

have in mind has been given by James and Kerber in [80, x6.3℄. In a

sense, modular harater theory has been a part of \omputational al-

gebra" right from the beginning, and most of the elementary methods

of [lo. it.℄ have already been desribed by Brauer and Nesbitt in [12℄.

Many of the algorithms of MOC whih are mostly onerned with sys-

tems of integral equations or inequalities are not new, but do not seem to

be widely known or used. A subsidiary purpose of our book is therefore

to show how powerful these methods an be, partiularly the methods

of solving systems of integral linear equations by p-adi expansion and
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the Gomory-algorithm for solving integral linear inequalities.

Some of the onepts developed for MOC have turned out to be of

theoretial interest in the investigation of other problems, too. The

work of Fong{Srinivasan and Dipper{James has led Gek and one of the

authors to the formulation of a theorem on basi sets of groups of Lie

type [46℄. The onept of basi set as used in this paper was introdued

in MOC in order to mehanize the alulation of deomposition numbers

for individual �nite groups. It is now lear from our experiene that

many onepts and algorithms an be used also for series of groups of

Lie type, sine the methods work for generi harater tables not just

for individual groups.

Some other aspets of our omputational work are worth mention-

ing. First of all, our need for simple data strutures for alulation in

ylotomi �elds led to a onjeture that abelian number �elds always

have a nie integral basis onsisting of sums (over an orbit) of roots of

unity. This onjeture has now been proved by H. W. Lenstra. We are

grateful to him for allowing us to present his proof in our book. These

speial bases for abelian number �elds are now also used in the Aahen

GAP system [111℄.

The prinipal design of MOC is at present di�erent from other om-

puter algebra systems available. MOC onsists of a olletion of small

one-purpose FORTRAN-programs. We have, for example one program

for matrix multipliation and one for solving integral linear equations.

The various programs ommuniate via �les. More omplex tasks are

ahieved by using Bourne-shell sripts alling a sequene of MOC pro-

grams. The shell sripts are an essential part of the MOC system. One

advantage of this design is the simple extendability of the system. It al-

lows the easy addition of new ommands to MOC. A further advantage

is the portability to other UNIX mahines. Another important feature

of MOC is supported by this design. Every run of a program is reorded

in a �le whih is attahed to a partiular group and prime. The MOC

programs also write their output onto this log-�le automatially. This

makes it possible to repeat partiular alulations and, what is most im-

portant, to write down proofs for the results obtained by the mahine.

Even the proof writing an be done automatially to a ertain extent.

This feature of MOC has been used to obtain most of the proofs of [56℄.

We emphasize the fat that MOC only works with Brauer haraters

and not with representations (.f. the Meat-Axe [106℄) and uses only el-
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ementary methods to the extent desribed in [80, x 6.3℄. Nevertheless,

in onnetion with the more advaned methods desribed in Setion 5.5,

one an get results whih are out of reah of systems working with rep-

resentations beause of the large degrees of the representations involved.

On the other hand, for some groups, the Meat-Axe and Condensation (see

[110, 98℄) are used suessfully to solve problems left open byMOC. This

applies in partiular for alulations in harateristis 2 and 3, where el-

ementary methods are muh less eÆient than for larger primes. The

three systems working together provide a very powerful omputational

tool for the alulation of irreduible Brauer haraters for individual

�nite groups.

1.4 Series of groups

Apart from individual groups, there is also onsiderable knowledge on

some series of simple groups. For the reason of ompleteness we briey

sketh the known results. Various authors, among them Robinson, Ker-

ber and James have established a theory of modular representations

for the symmetri and alternating groups (see for example [75, 84℄).

Burkhardt did some work for groups of Lie type; in partiular he found

all deomposition numbers for the simple groups PSL(2; q) [15℄, all de-

omposition numbers for the Suzuki groups in odd harateristis [16℄,

and some deomposition numbers for the Suzuki groups and the unitary

groups U(3; 2

f

) in even harateristi [16, 17℄. Fong in [36℄ started the

investigation for the small Ree groups

2

G

2

(3

2m+1

), but he had to leave

some problems open. These were later solved by Landrok and Mihler

[94℄. The work on these groups was ompleted in [53℄.

The investigation for the groups of Lie type naturally divides into the

ase where the modular harateristi is the de�ning harateristi of the

group, i.e., the harateristi of the underlying �eld, and the ase where

the two harateristis are di�erent. In the de�ning harateristi ase

the representation theory of algebrai groups is relevant, in partiular

the problem of �nding the multipliities of the simple modules in the

Weyl modules. An aÆrmative answer to Lusztig's onjeture (see [96℄)

would solve most of the problems for the �nite groups of Lie type in this

ase.

In the non-de�ning harateristi ase, a theory has been evolving



6 CHAPTER 1. INTRODUCTION

starting with a series of papers by Fong and Srinivasan. The highlight

of their work is the omplete desription of all the Brauer trees for the

lassial groups in [41℄. Dipper and James have been developing a rep-

resentation theory for the general linear groups whih has led to the

ompletion of the deomposition numbers for GL

n

(q), n � 10 [79℄. Fur-

thermore, some of the deomposition numbers for G

2

(q) and Sp

4

(q) are

known by the work of Hiss, Shamash and White. Gek has determined

most of the irreduible Brauer haraters for U(3; q) and the Steinberg

triality groups

3

D(4; q

3

) in [43, 45℄. Finally, the Brauer trees for the Ree

groups are known ompletely [53℄.

1.5 Speial defet groups

In general the problem of �nding the Brauer harater table of a �nite

group is onsiderable harder than that of �nding the ordinary irreduible

haraters. This is partly due to the fat that in ontrast to the ordinary

harater theory there is no inner produt on the set of Brauer hara-

ters whih tells the irreduibility of a Brauer harater. However, in

partiular ases, there are deep theoretial results whih an be used to

good advantage. If a group is p-soluble, the Fong{Swan theorem states

that every irreduible Brauer harater is liftable to an ordinary har-

ater. This leads immediately to an algorithm for the determination of

the irreduible Brauer haraters.

Brauer has introdued the onepts of bloks, whih leads to a sub-

division of the problems. The bloks orrespond to the primitive idem-

potents of the entre of the modular group algebra. The deomposition

matrix is a matrix diret sum of the deomposition matries for the blok

algebras, and so it suÆes to onsider eah blok in turn. Brauer has as-

soiated to eah blok a onjugay lass of p-groups, the defet groups of

the blok. Their isomorphism type measures the diÆulty or omplexity

of �nding the Brauer haraters for the blok. If the defet groups are

trivial, the blok is alled a blok of defet zero, having as deomposi-

tion matrix a (1 � 1)-matrix with single entry 1. If the defet groups

are yli, the Brauer{Dade theorem imposes strong restritions on the

deomposition numbers. In this ase, the deomposition matrix an be

enoded in a ertain tree, the Brauer tree. There are other defet groups

of a partiular type, namely dihedral 2-groups and quaternion groups,
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where all possible deomposition matries ouring for bloks with these

defet groups are known by work of Brauer, Olsson and Erdmann [29℄.

Brou�e and Puig have introdued the notion of nilpotent bloks in [13℄,

generalizing the onept of bloks with yli defet groups. Puig [108℄

has given a remarkable extension of the Brauer{Dade theorem. His re-

sults, whih are neatly explained in [91℄, imply the knowledge of the

deomposition numbers for nilpotent bloks.

It has been onjetured by Donovan that, given a �nite p-group D,

there are only �nitely many matries whih are deomposition matries

for bloks of �nite groups with defet groups isomorphi to D. Sopes

[113℄ has shown the onjeture to be true if we restrit the lass of groups

to symmetri groups. For yli defet groups Donovan's onjeture is

true by the results of Brauer and Dade. Nevertheless, to write down all

deomposition matries belonging to bloks with a given yli defet

group, one still uses the lassi�ation of �nite simple groups (.f. [31℄).

It is our opinion that �nite simple groups and in partiular the sporadi

groups will play an important role in the desription of deomposition

matries for general defet groups, even if Donovan's onjeture is shown

to be true some day. This, we believe, justi�es the appliation of our

methods and in partiular the usage of MOC.





Chapter 2

Bakground from

modular harater theory

In this hapter we introdue our notation and reall some basi fats

of harater theory. We follow the exposition of Goldshmidt [47℄ and

also Chapter 15 of Isaas' book [70℄. This hapter is intended to give

the beginner a quik introdution to those parts of the theory whih

are essential for the understanding of the following. We give no proofs

but referenes to the appropriate soures. We assume the reader to be

familiar with ordinary harater theory of �nite groups.

Throughout this hapter let G be a �nite group, and p a �xed prime

number.

2.1 Brauer haraters

We use almost the same set-up as Isaas in Chapter 15 of [70℄. Let R

denote the ring of algebrai integers over the rationals, and let K be the

quotient �eld of R. Choose a maximal ideal I of R ontaining p. Finally

let F = R=I denote the residue lass �eld of R, a �eld of harateristi p

whih is algebraially losed. The anonial epimorphism R! F indues

an isomorphism � from the set of jGj

p

0

-th roots of unity to F

�

(see [70,

Lemma (15.1)℄), whih is used to de�ne Brauer haraters as follows.

An element of G of order not divisible by p is alled p-regular or a

9
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p

0

-element. An element of order divisible by p is alled p-singular. The

set of all p-regular elements is denoted by G

p

0

.

De�nition 2.1.1 Let X : G ! GL

n

(F ) be an F -representation of G.

The Brauer harater #

X

of X is a map #

X

: G

p

0

! K. Let g 2 G

p

0

, and

let �

1

; : : : ; �

n

denote the eigenvalues of X (g). We then de�ne #

X

(g) =

P

n

i=1

�

�1

(�

i

).

If we apply the anonial epimorphism to #

X

(g), we obtain the trae of

the matrix X (g). We say that the Brauer harater #

X

is a�orded by

the representation X . The funtion omplex onjugate to #

X

is also a

Brauer harater. It is a�orded by the representation dual to X . We

sometimes think of a Brauer harater as being de�ned on all of G by

letting its values be 0 on p-singular elements. This point of view is taken

primarily in this and the next hapter in order to simplify notation. In

the implementation of the MOC-system a Brauer harater is of ourse

only stored as a funtion on G

p

0

.

A Brauer harater is alled irreduible if it orresponds to an irre-

duible F -representation of G. It is a basi fat that the set of irreduible

Brauer haraters of G is �nite and linearly independent as funtions

from G to K ([70, Theorem 15.5℄).

Note that there are several maximal ideals I inside R ontaining p.

A di�erent hoie of I would in general give another Brauer harater

for the same F -representation. However, all MOC-alulations are inde-

pendent of the hoie of I . The reader is invited to hek this assertion,

as we go along.

2.2 The deomposition matrix

The rings (K;R; F ) are �xed in the following. They form our p-modular

system.

The set of ordinary irreduible K-haraters of G is denoted by

Irr(G), the set of irreduible Brauer haraters by IBr(G). Sine K

is a splitting �eld for the group ring KG, the number of irreduible

K-haraters equals the number of onjugay lasses of G.

The set of all Z-linear ombinations of ordinary haraters is a free

abelian group with basis Irr(G). It is isomorphi to the Grothendiek
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group of the ategory of �nitely generated KG-modules (see [20, Propo-

sition (16.10)℄) and is therefore denoted by G

0

(KG). The latter fat is

not needed in our book; it is only stated to motivate the notation. Simi-

larly, G

0

(FG) denotes the set of all Z-linear ombinations of irreduible

Brauer haraters. Elements in these groups are alled generalized or

virtual haraters. A funtion on G whih is onstant on onjugay

lasses is alled a lass funtion. Charaters are lass funtions and thus

G

0

(KG) and G

0

(FG) are subgroups of C(G), the set of K-valued lass

funtions of G. We let C

p

0

(G) denote the set of lass funtions of G with

values in K, vanishing on p-singular elements. Then, by our de�nition,

G

0

(FG) is ontained in C

p

0

(G).

If � 2 G

0

(KG), we de�ne �̂ by

�̂(g) =

�

�(g); if g is p-regular,

0; otherwise:

(2.1)

Now omes the important observation. If � is an ordinary harater,

�̂ is a Brauer harater. This an be seen as follows. Let X be a K-

representation of G a�ording the harater �. Let

~

R denote the loal-

ization of R at the maximal ideal I . Then X an be realized over

~

R,

i.e., there is some representation Y equivalent to X , suh that the matri-

es representing the group elements have all entries in

~

R ([70, Theorem

15.8℄). We remark that X an even be realized overR ([68, Satz V.12.5℄),

but this fat is less elementary. The anonial epimorphism R! F an

be extended uniquely to an epimorphism

~

R ! F . We thus obtain a

representation

^

Y : G! GL

n

(F ) by applying this epimorphism to every

entry of a representing matrix. Then the Brauer harater a�orded by

^

Y obviously is �̂.

We now onsider the deomposition homomorphism:

d : G

0

(KG) �! G

0

(FG)

� 7�! �̂

The matrix of d with respet to the bases Irr(G) and IBr(G) is alled

the deomposition matrix of G and denoted by D. The entries of D are

the non-negative integers d

�'

de�ned by

�̂ =

X

'2IBr(G)

d

�'

':
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The purpose of MOC is to support the alulation of deomposition

matries.

It is an important fat, whih follows from Brauer's haraterization

of haraters, that the deomposition homomorphism is surjetive ([70,

Theorem 15.14℄). This means that every irreduible Brauer harater is

a Z-linear ombination of f�̂ j � 2 Irr(G)g. The fat that Irr(G) is a

basis of C(G) now implies that the set of irreduible Brauer haraters

spans C

p

0

(G). As IBr(G) is linearly independent, we obtain that jIBr(G)j

equals the number of p-regular onjugay lasses of G.

2.3 Projetive haraters and orthogonality

relations

We are now going to introdue the projetive haraters.

De�nition 2.3.1 Let ' 2 IBr(G). The projetive indeomposable har-

ater orresponding to ' is the ordinary harater �

'

de�ned by

�

'

=

X

�2Irr(G)

d

�'

�:

A projetive indeomposable harater will be alled a PIM in the fol-

lowing. We denote by IPr(G) the set of all PIMs and by K

0

(FG) the

group of all Z-linear ombinations of IPr(G). A Z-linear ombination

with non-negative oeÆients of PIMs is alled a projetive harater,

or a genuine projetive harater.

It is now most important to observe that a PIM vanishes on p-singular

lasses ([47, (6.9)(a)℄). In partiular, K

0

(FG) � C

p

0

(G).

This de�nition of PIMs is suggested by Brauer's reiproity law. It

an be given without introduing projetive modules and some important

properties of projetive haraters an be derived on this more elemen-

tary level. Of ourse, to get deeper results on projetive haraters one

has to give the usual de�nition via projetive modules.

For z 2 C let �z denote the number omplex onjugate to z. The

usual inner produt on C(G) is denoted by h ; i. It is de�ned by

h�; �i =

1

jGj

X

g2G

�(g)�(g): (2.2)
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We reall the orthogonality relations.

Theorem 2.3.2 (Orthogonality relations for Brauer haraters):

The two sets IPr(G) and IBr(G) are dual bases of C

p

0

(G) with respet to

h ; i.

Proof. This follows from the orthogonality relations for ordinary har-

aters and the fat that a PIM vanishes on p-singular lasses (see [47,

(6.10)℄).

It follows from Theorem 2.3.2 that h�;  i 2 Z, if � 2 K

0

(FG) and

 2 G

0

(FG). Furthermore, h�;  i 2 N , if � is a projetive harater

and  a Brauer harater. The latter observation has the following

onverse, whih will be used in the onstrution of projetive haraters.

Proposition 2.3.3 Let 	 be an ordinary harater of G whih vanishes

on p-singular lasses. Then 	 2 K

0

(FG). If, furthermore,

h';	i � 0 for all ' 2 IBr(G);

then 	 is a genuine projetive harater.

Proof. By the orthogonality relations, IPr(G) is a K-basis of C

p

0

(G).

Write

	 =

X

'2IBr(G)

a

'

�

'

:

Then a

'

= h';	i, whih is an integer sine ' is a Z-linear ombination

of restrited ordinary haraters.

This proposition is used later on to show that ertain onstrutions yield

genuine projetive haraters. The fundamental priniple of the MOC-

system is to produe projetive haraters to approximate the olumns

of the deomposition matrix.

In order to simplify alulations based on the orthogonality rela-

tions, we introdue some more notation allowing us to write the or-

thogonality relations as matrix equations. We �rst hoose represen-

tatives g

1

= 1; g

2

; : : : ; g

s

for the onjugay lasses of G. We assume

that the �rst s

0

of these elements are p-regular, and that g

s

0

+1

; : : : ; g

s

are p-singular. Let C denote the (s � s)-diagonal matrix with entries
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jC

G

(g

1

)j

�1

; jC

G

(g

2

)j

�1

; : : : ; jC

G

(g

s

)j

�1

. If M = f�

1

; : : : ; �

m

g is a set of

lass funtions of G, we write

[M℄ = (�

i

(g

j

))

1�i�m;1�j�s

for the (m � s)-matrix giving the values of the funtions in M. For

example, [Irr(G)℄ is the table of ordinary irreduible haraters of G.

We always assume that any set of lass funtions is given in a partiular

order.

If N = f�

1

; : : : ; �

n

g is another set of lass funtions, then hM;Ni

is the matrix (h�

i

; �

j

i)

1�i�m;1�j�n

of mutual inner produts of the ele-

ments of M with the elements of N. Finally, M := f

�

�

1

; : : : ;

�

�

m

g, where

�

�

i

is the lass funtion omplex onjugate to �

i

.

With these notations we have:

hM;Ni = [M℄C [N℄

t

: (2.3)

Writing E

`

for the identity matrix of size `, the two orthogonality rela-

tions an be written as follows:

[Irr(G)℄ C [Irr(G)℄

t

= E

s

(2.4)

[IPr(G)℄ C [IBr(G)℄

t

= E

s

0

: (2.5)

2.4 Bloks

Let us reall the fundamental notions of Brauer's blok theory. Following

Isaas [70, p. 272℄, we �rst introdue the Brauer graph of G. Its vertex

set is Irr(G). Two verties � and  are linked by an edge, if there

exists ' 2 IBr(G) suh that d

�'

6= 0 6= d

 '

. The set of haraters

orresponding to a onneted omponent of the Brauer graph is alled a

blok of G.

If B is a union of bloks, we write Irr(B) and IBr(B) for the sets of

irreduible ordinary haraters respetively Brauer haraters in B. Let

B

1

; : : : ; B

b

denote the bloks of G. Then

Irr(G) =

b

[

i=1

Irr(B

i

);
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a disjoint union. If C(G;B

i

) denotes the spae of lass funtions spanned

by Irr(B

i

), we obtain

C(G) =

b

M

i=1

C(G;B

i

):

For the set of irreduible Brauer haraters we have

IBr(G) =

b

[

i=1

IBr(B

i

);

again a disjoint union. By our de�nition of projetive haraters the

ordinary onstituents of a PIM are all ontained in a unique blok. In

this sense every PIM belongs to a blok. We write IPr(B

i

) for the set

of PIMs lying in blok B

i

. Let C

p

0

(G;B

i

) denote the K-spae of lass

funtions spanned by IBr(B

i

). We thus have

C

p

0

(G) =

b

M

i=1

C

p

0

(G;B

i

):

Therefore, the deomposition matrix splits into a diret sum of blok

deomposition matries D

B

, and we an restrit our attention to the

partiular bloks, thus greatly simplifying the problem.

The preeding remark of ourse only makes sense if one an determine

the bloks of G from the ordinary harater table before knowing the

deomposition numbers. This is indeed the ase. For � 2 Irr(G) let !

�

denote the entral harater orresponding to � de�ned by

!

�

(g) =

jGj�(g)

jC

G

(g)j�(1)

; g 2 G: (2.6)

Then !

�

(g) is an algebrai integer and hene is in R for all g 2 G

(see [70, Theorem 3.7℄). Then (see [70, Theorem 15.27℄) two haraters

�;  2 Irr(G) are in the same blok, if and only if

jGj�(g)

jC

G

(g)j�(1)

�

jGj (g)

jC

G

(g)j (1)

(mod I) for all g 2 G

p

0

: (2.7)

This riterion is independent of the hoie of the maximal ideal I of R

ontaining p ([70, Theorem 15.18℄).
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The easiest bloks to deal with are the so-alled bloks of defet 0.

They ontain exatly one ordinary irreduible harater. This is at the

same time the unique irreduible Brauer harater and the unique PIM

in the blok. Thus the deomposition matrix of a blok of defet 0 is

the (1 � 1)-matrix with single entry 1. An irreduible harater � lies

in a blok of defet 0, if and only if p does not divide jGj=�(1) ([70,

Theorem (15.29)℄). In partiular, if p does not divide the order of G, the

deomposition matrix is the identity matrix.

It is often onvenient to know the number of irreduible Brauer har-

aters in a blok. Sine the deomposition map is surjetive, the blok

deomposition matries have maximal Z-rank and we have:

Remark 2.4.1 Let



Irr(B) = f�̂ j � 2 Irr(B)g. Then the Z-rank of

[



Irr(B)℄ equals jIBr(B)j.

More generally, suppose we have a K-linear map

� : C(G) �! C(G);

whih leaves Irr(B) and IBr(B) invariant and ommutes with the deom-

position map d : C(G)! C(G). Suh homomorphisms arise, for example,

from a group automorphism of G or from the duality operation on the

modules of G. We are then interested in the number of haraters in B

�xed by �. We write

�

# for the �-image of a harater # and Irr(B)

�

,

respetively IBr(B)

�

for the set of �-invariant elements. The following

result generalizes an observation of Brauer and Feit (see [47, (7.14)(b)℄),

whih was ommuniated to the authors by Kn�orr.

Proposition 2.4.2 Let � be the harater of B de�ned by:

�(g) =

X

�2Irr(B)

�(g)

�

�(g

�1

); g 2 G:

Then

jIrr(B)

�

j = h1

G

; �i and jIBr(B)

�

j = h1

G

; �̂i:

Proof. We have h1

G

; �i =

P

�2Irr(B)

h�;

�

�i, from whih the �rst equa-

tion follows. To prove the seond, let D

B

= (d

�'

) denote the deomposi-

tion matrix of B. For ' 2 IBr(G) let �

'

denote the PIM orresponding
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to '. We then have:

h1

G

; �̂i =

X

�2Irr(B)

h�;

�

�̂i =

X

�2Irr(B)

X

'2IBr(B)

d

�'

h�;

�

'i =

X

'2IBr(B)

h�

'

;

�

'i:

The result follows.

2.5 Generation of haraters

We briey desribe the prinipal methods to produe Brauer haraters

and projetive haraters.

2.5.1 Restrition and indution

Suppose H is a subgroup of G. If # 2 C(G) is a lass funtion of G, the

restrited lass funtion #

H

is de�ned by:

#

H

(h) = #(h); h 2 H: (2.8)

If # is an ordinary or a Brauer harater, then so is #

H

. If # 2 C(H) is a

lass funtion of H , the indued lass funtion #

G

is de�ned as follows.

For g 2 G hoose representatives h

1

; : : : ; h

s

for the H-onjugay lasses

ontained in the G-onjugay lass of g. Then

#

G

(g) =

s

X

i=1

jC

G

(g)j

jC

H

(h

i

)j

#(h

i

): (2.9)

The Frobenius reiproity law asserts that the two operations introdued

above are adjoint operations with respet to the inner produt h ; i. This

means that, given lass funtions #, � of H respetively G, we have

h#

G

; �i = h#; �

H

i:

Gek has observed that Frobenius reiproity, together with Proposi-

tion 2.3.3, an be used to show that indution takes projetive haraters

to projetives. Let � be a projetive harater of H . Then �

H

is an
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ordinary harater of G; looking at the de�nition (2.9), we see that

it vanishes on the p-singular onjugay lasses. If ' is an irreduible

Brauer harater of G, then h';�

G

i = h'

H

;�i � 0, sine '

H

is a gen-

uine Brauer harater of H , and � is projetive. Thus � is a genuine

projetive harater of G.

Let # denote a Brauer harater ofH a�orded by some representation

X over F . Then #

G

is a Brauer harater of G; indeed, it is the Brauer

harater a�orded by the representation of G indued by X (see [20,

x10A, Exerise 10 in x18℄). This observation in turn shows that the re-

strition of a projetive harater to a subgroup is a projetive harater.

The following theorem tells us how to �nd enough projetive hara-

ters.

Theorem 2.5.1 (Fong [35, Lemma 1℄:) Let P be the set of projetive

haraters of G obtained by induing the PIMs of all maximal subgroups.

Then K

0

(FG) is the Z-span of P.

Proof. This follows from Brauer's indution theorem. See, for example

[114, II 4.2,Corollary 2℄.

2.5.2 Restrition to p-regular lasses

If # 2 C(G) is a lass funtion of G, let

^

# be de�ned by (2.1). Sine the

deomposition map is surjetive, the set



Irr(G) = f�̂ j � 2 Irr(G)g spans

G

0

(FG) over the integers.

2.5.3 Restrition to bloks

Let B denote a union of p-bloks of G. Let  =

P

�2Irr(G)

m

 ;�

� 2

G

0

(KG). Then the restrition of  to B is the generalized harater

 

B

=

X

�2Irr(B)

m

 ;�

�: (2.10)

Thus  

B

is just the projetion of  from C(G) onto C(G;B), the spae

of lass funtions spanned by Irr(B).
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Similarly, if # is a generalized Brauer harater, #

B

is the projetion

of # onto C

p

0

(G;B). Thus if # =

P

'2Irr(G)

d

#;'

'; then

#

B

=

X

'2Irr(B)

d

#;'

': (2.11)

We remark, that in eah ase we have to know a basis of the spaes

C(G;B) respetively C

p

0

(G;B) in order to alulate the projetions, but

of ourse any basis will do.

2.5.4 Tensor produts

The produt of any two haraters is again a harater. This is true for

ordinary and Brauer haraters. For projetive haraters the following

more general statement is true. Namely, if # is a Brauer harater and

	 is a projetive harater, then the tensor produt #	 is a projetive

harater. As Gek has observed, a proof of this fat an be given similar

to those in x 2.5.1 by just using Proposition 2.3.3.

This statement for projetive haraters is extremely important for

the purposes of MOC. It is used mainly in the ase when 	 is an ordi-

nary irreduible harater of defet 0. These are of ourse the projetive

haraters whih are readily available. The above statement means in

partiular, that the produt of two ordinary irreduible haraters is

projetive, if one of the fators is a defet 0 harater. The projetives

obtained in this way only depend on the harater table of G and not

on the set of subgroups of G. If we are able to determine the irreduible

Brauer haraters of G by using only projetives of this sort, the deom-

position numbers are determined by the harater table.

2.5.5 Symmetrizations

This paragraph is somewhat less elementary than the preeding ones,

sine the fats we are going to desribe do not seem to follow by just

onsidering haraters.

Let � be an ordinary or modular harater of G. The symmetri and

skew square of � are the lass funtions

�

2+

(g) =

1

2

(�(g)

2

+ �(g

2

))
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respetively

�

2�

(g) =

1

2

(�(g)

2

� �(g

2

)); g 2 G:

The symmetri or skew square of a harater is again a harater, af-

forded by the symmetri respetively skew power of the module a�ord-

ing � (if p 6= 2). This observation an be generalized to yield, for every

positive integer r and every partition � of r a symmetrized harater �

�

.

We now outline this method following James [76℄. Let V denote the

SG-module a�ording the harater �. Here, S is one of the �eldsK or F .

Let r denote a positive integer satisfying r � n, where n = Dim

S

(V ). Let

V


r

denote the r-fold tensor produt of V on whih G ats diagonally.

Now V and hene V


r

is a module for the general linear group GL(V )

in its natural ation on V and thus every GL(V )-setion (a quotient

module of a submodule) of V


r

gives rise to an SG-module by way

of restrition. If the harateristi p of S is 0 or larger than r, then

V


r

is a semisimple GL(V )-module. For every partition � of r there is

an irreduible GL(V )-module V

�

, the Weyl module orresponding to �,

and V


r

is a diret sum of the Weyl modules. If p is positive and less

than or equal to r, then V


r

still has a �ltration by Weyl modules V

�

,

but they are no longer diret summands. Furthermore, in general the

Weyl modules are not irreduible anymore. Every Weyl module V

�

has a

unique top omposition fator F

�

. The other omposition fators of V

�

are of the form F

�

for partitions � whih are stritly smaller than � in the

dominane order of partitions. Thus, if the partitions of r are arranged

in reverse lexiographi order, the matrix M

r;p

giving the multipliities

of the F

�

in the V

�

is lower unitriangular.

Let  

�

denote the harater of G a�orded by the Weyl module V

�

. It

an be alulated with the help of the harater table of the symmetri

group S

r

. Let � = (�

1

; �

2

; : : : ; �

r

), �

1

� �

2

� : : : � �

r

� 0, be a

partition of r. Let C(�) denote the entralizer in S

r

of an element with

yle type �, and let [�℄(�) denote the value of the irreduible harater

of S

r

orresponding to � on an element with yle type �. Then, for

p-regular g 2 G,

 

�

(g) =

X

�`r

1

jC(�)j

[�℄(�)

r

Y

i=1

 (g

�

i

): (2.12)

If p is non-zero and does not exeed r, than we an improve on
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the above symmetrization formula, sine the Weyl modules are not irre-

duible in general. Let �r; p = M

�1

r;p

[Irr(S

r

)℄. This matrix is alled by

James an \extended p-modular harater table of S

r

". The harater

'

�

of G a�orded by the simple module F

�

an then be alulated by the

formula (2.12) with [�℄ replaed by the orresponding row of �r; p.

In [76℄ James has alulated the matriesM

r;p

and �

r;p

for r � 6 and

p = 2; 3. For example, labelling the rows and olumns of the following

matries with the partitions of 3 in reverse lexiographi order, we have

M

3;3

=

0

�

1 0 0

1 1 0

0 1 1

1

A

and

�

3;3

=

0

�

1 �1 1

1 1 �2

0 0 3

1

A

:

If  is a 3-modular harater of a group G of degree at least 3, the

three 3-modular symmetrizations are the following:

'

(1;1;1)

(g) =

1

6

 (g)

3

�

1

2

 (g

2

) (g) +

1

3

 (g

3

)

'

(2;1)

(g) =

1

6

 (g)

3

+

1

2

 (g

2

) (g)�

2

3

 (g

3

)

'

(3)

(g) =  (g

3

):

The formulae of James have been implemented in the CAS system [104℄.

In his thesis [49℄, Grabmeier has extended the alulations of James to

the ase of r � 9 and p = 2; 3.





Chapter 3

Computational Conepts

We are now going to introdue the notions of basi sets and atoms and

derive some of their most important properties. These notions are fun-

damental for the algorithms of MOC, in partiular those whih try to

prove the irreduibility of a Brauer harater or the indeomposability

of a projetive harater. They allow us to translate some of the prob-

lems ouring during the alulation of deomposition matries into the

language of Linear Algebra. Furthermore, the MOC methods generalize

all elementary methods for alulating deomposition numbers desribed

in the literature (see [80, Setion VI.3℄ for a olletion af these methods).

They an be systematially applied and are mehanized so as to be suit-

able for the treatment with omputers.

We also formulate two fundamental omputational problems whih

we believe to be of independent interest.

It turned out that these onepts, originally designed for appliation

to sporadi groups, ould also be applied suessfully to the study of

modular haraters of �nite groups of Lie type (see [52℄). They allow

to deal with all groups of a �xed rank and Dynkin type simultaneously.

The reason for this is that in a suÆient general situation we an �nd

basi sets whih an be desribed independently of the underlying �eld

(see [46℄).

23
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3.1 Basi sets

We ontinue with the notation introdued in the preeding setion. Here,

we let B denote a �xed union of p-bloks ofG. Let Irr(B) = f�

1

; : : : ; �

n

g.

The subgroups of G

0

(KG), G

0

(FG) and K

0

(FG) generated by the har-

aters in B are denoted by G

0

(B), G

0

(

^

B) and K

0

(B) respetively. We

write G

0

(B)

+

for the set of genuine haraters of G

0

(B), and use an

analogous notation for Brauer and projetive haraters.

De�nition 3.1.1 A basi set of Brauer haraters BS (basi set of pro-

jetive haraters PS) is a Z-basis of G

0

(

^

B) (of K

0

(B)) onsisting of

Brauer (projetive) haraters.

We emphasize the fat that a basi set onsists of proper haraters,

in ontrast to the usage in the literature. One of the reasons is the

experiene that one should never give away the information of a harater

being proper. We invest a great deal of time to reah the aim of having

basi sets at every stage of the alulations. In partiular, we introdue

an algorithm whih for a given set of proper haraters determines a

Z-basis of their span onsisting again of proper haraters.

The �rst question we investigate, is the following. Given a set of

Brauer haraters, how an we deide whether it is a basi set?

Lemma 3.1.2 Let S � G

0

(

^

B)

+

. Then S is a basi set if and only

if S is linearly independent over Z, and every ordinary harater of B,

restrited to the p-regular lasses, is a Z-linear ombination of elements

of S.

Proof. The neessity of the ondition is lear. The onverse follows

from the surjetivity of the deomposition homomorphism.

Example 3.1.3 Here, and in the following examples, we denote irre-

duible haraters by their degrees, whih in our examples identi�es

them uniquely. Consider the prinipal 7-blok B of Conway's simple

group Co

1

. It ontains the following 27 ordinary irreduible haraters:

8

>

>

>

<

>

>

>

:

1; 276; 299; 17250; 80730;

94875; 822250; 871884; 1821600; 2055625;

9221850; 16347825; 21528000; 21579129; 24667500;

31574400; 57544344; 66602250; 85250880; 150732800;

163478250; 191102976; 207491625; 215547904; 219648000;

299710125; 326956500

9

>

>

>

=

>

>

>

;

:
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If we restrit these to the 7-regular lasses, the subsetBS of the 21 under-

lined haraters is linearly independent, and the six remaining haraters

not in BS an be written as Z-linear ombinations of these aording to

the following table (we omit the hat on top of the degrees):

31574400 : : : : : �1 : : 1 : : �1 1 : 1 : : : : : :

191102976 1 : �1 : �1 : 1 : �1 : �1 1 : 1 : : : : : 1 :

215547904 : : : �1 �1 1 1 1 �1 : �1 1 �1 : : : 1 : : 1 :

219648000 1 : : 1 : : : : : : : 1 : 1 �1 : �1 �1 1 : 1

299710125 : : : 1 : �1 �1 : 1 �1 1 : : : : : �1 : 1 : 1

326956500 : �1 1 �1 : 1 : 1 �1 1 �1 1 �1 1 �1 1 : �1 : 1 1

Here, the olumns orrespond to the 21 haraters in inreasing order

of their degrees. Thus the blok ontains exatly 21 irreduible Brauer

haraters and our 21 haraters are a basi set.

We have seen how to prove for a given set of Brauer haraters that

it is a basi set. Now the question arises, of how to do the same for

projetive haraters. By the theorem of Fong ited in x 2.5.1 we know

that in priniple enough projetive haraters an be obtained to span

the spae K

0

(B).

We assume that we have onstruted a set of projetive haraters

and seleted from these a maximal linearly independent subset PS. How

an we deide whether or not PS is a basi set?

Lemma 3.1.4 Let BS and PS be two sets of Brauer haraters re-

spetively projetive haraters. We assume that eah ontains exatly

jIBr(B)j elements. Let

U = hBS;PSi (3.1)

be the matrix of their mutual salar produts. Then BS and PS are basi

sets if and only if U is invertible over Z.

Proof. We have

[BS℄ = U

1

[IBr(B)℄ (3.2)

and

[PS℄ = U

t

2

[IPr(B)℄: (3.3)

with integral matries U

1

and U

2

. From (2.3) and the orthogonality

relations we obtain:

U = [BS℄C [PS℄

t

= U

1

[IBr(B)℄C [IPr(B)℄

t

U

2

= U

1

U

2

:
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Now BS respetively PS are bases if and only if U

1

and U

2

are invertible

over Z and the assertion follows.

Example 3.1.5 Consider again the prinipal 7-blok of Co

1

. Let BS

be as in Example 3.1.3. After some alulations, whih we do not want

to omment on right here, (but see Chapter 6), we have found a set PS

of projetive haraters, suh that U = hBS;PSi is the matrix given

below, where the olumns orrespond to the projetive haraters. Now

detU = 1, so that PS is indeed a basi set of projetives by Lemma 3.1.4.

	 : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 : : : : : : : : : : : : : : : : : : : :

276 1 1 : : : : : : : : : : : : : : : : : : :

299 1 : 1 : : : : : : : : : : : : : : : : : :

17250 1 : 1 1 : : : : : : : : : : : : : : : : :

80730 1 : : : 1 : : : : : : : : : : : : : : : :

94875 1 1 : : : 1 : : : : : : : : : : : : : : :

822250 1 : 1 : : : 1 : : : : : : : : : : : : : :

871884 1 : : : : : : 1 : : : : : : : : : : : : :

1821600 1 1 : 1 1 : : : 1 : : : : : : : : : : : :

2055625 : : : 1 : : : : : 1 : : : : : : : : : : :

9221850 1 : : : : 1 1 : : : 1 : : : : : : : : : :

16347825 : : : 1 2 : : : 1 : : 1 : : : : : : : : :

21528000 1 : : : : 1 : 1 : : : : 1 : : : : : : : :

21579129 : : : : : : : : : : : : : 1 1 : : : : : :

24667500 1 : : : 1 : : : : : : 1 : 1 : : : : : : :

57544344 2 : 1 1 : : 1 : : : 1 : : 1 : 1 : : : : :

66602250 : : : 2 1 : : : 1 1 : : : 1 : : 2 1 1 : :

85250880 2 : 1 2 : : : : : 1 : : : 2 : 1 1 : : : :

150732800 : : : 1 : : : : : 1 : : 1 1 : 1 1 1 : 1 1

163478250 3 1 : 1 : 1 : : : : 1 : 1 1 : 1 1 : : 1 1

207491625 1 : : 1 : : : : : 1 : : 1 3 : : 3 1 1 1 :
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3.2 Atoms

De�nition 3.2.1 A Z-basis BA (PA) of G

0

(

^

B) (K

0

(B)) is alled a

system of atoms of Brauer (projetive) haraters, if every Brauer (pro-

jetive) harater is a linear ombination with non-negative oeÆients

of elements of BA (PA). A Brauer atom (projetive atom) is a gener-

alized Brauer (projetive) harater, whih is a member of a system of

atoms.

In ontrast to the de�nition of basi sets, we do not insist that our

system of atoms onsists of proper haraters. The next result shows

how to obtain a system of projetive atoms from a basi set of Brauer

haraters. Of ourse, Brauer haraters and projetive haraters an

be interhanged in the formulation of this and many of the following

results.

Lemma 3.2.2 Let BS be a basi set of Brauer haraters. If PA de-

notes the basis of K

0

(B) dual to BS with respet to the bilinear form

h ; i, then PA is a system of projetive atoms.

Proof. We have

[BS℄ = U [IBr(B)℄;

where the entries of U are non-negative integers, and detU = �1. From

[PA℄C [BS℄

t

= E

m

and the orthogonality relations we obtain

[IPr(B)℄ = U

t

[PA℄;

and thus our assertion.

Given BS, it is not neessary for our purposes, though in priniple pos-

sible, to know the elements of the dual basis PA expliitly as lass fun-

tions. Suppose we are given two basi sets BS and PS. The orre-

sponding dual bases of atoms are denoted by PA and BA. Suppose

furthermore, that P and B are two sets of projetive haraters respe-

tively Brauer haraters. Then to express the elements of P in terms

of the basis PA is equivalent to alulating the inner produts of the
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elements of P with the haraters in BS. Namely, let V = hP;BSi.

Then

[P℄ = V [PA℄:

Similarly, if U = hPS;Bi, then

[B℄ = U

t

[BA℄: (3.4)

In partiular, if we takeBS for the setB of Brauer haraters in (3.4), we

obtain the elements of BA as lass funtions by inverting the matrix U

t

.

Before we ontinue with our exposition, we give an easy but never-

theless very useful appliation of the notions introdued so far.

Lemma 3.2.3 Suppose PA is a system of projetive atoms. If � is a

projetive harater ontained in PA, then � is indeomposable.

Proof. Let PA = f�

1

; : : : ;�

m

g with � = �

1

. Furthermore, let

	

1

; : : : ;	

m

denote the PIMs. We write

	

i

=

m

X

j=1

z

ij

�

j

:

Then all z

ij

� 0, and their matrix is invertible. Sine � is projetive, we

an write

� =

m

X

i=1

x

i

	

i

with x

i

� 0. Therefore

�

1

= � =

m

X

j=1

 

m

X

i=1

x

i

z

ij

!

�

j

:

From this it follows that x

i

= 0 for all i 6= i

0

and x

i

0

= 1, i.e. � = 	

i

0

.

Example 3.2.4 The projetive harater 	

15

of Example 3.1.5 is an

atom, sine it has inner produt 1 with 21579129, but 0 with all the

other haraters of BS. Hene it is a PIM.

Of ourse there is an analogous statement for Brauer haraters. The

above observation allows to prove indeomposability of projetive har-

aters and irreduibility of Brauer haraters. It is, however, only a very

speial ase of a muh more general proedure, whih will be desribed

in Chapter 5.
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3.3 The �rst fundamental problem

We are now ready to formulate the �rst fundamental problem of our

theory. We assume that we are given two basi sets BS and PS. The

orresponding dual bases of atoms are denoted by PA and BA. We are

interested in all matries whih an possibly be deomposition matries

with respet to the given information. First we alulate the matrix U

of the salar produts of the haraters of BS with the haraters of PS.

Writing

[BS℄ = U

1

[IBr(B)℄ and [PS℄ = U

t

2

[IPr(B)℄; (3.5)

we have, as in the proof of Lemma 3.1:

U = U

1

U

2

: (3.6)

Notie that by our de�nition of basi sets, U

1

and U

2

have non-negative

entries. We write X � 0 to indiate that every entry of the matrix X

over the integers is non-negative. Having BS at our hands, we know

how to write the restrition of the ordinary haraters to the p-regular

lasses in terms of the haraters in BS, say

[



Irr(G)℄ = V [BS℄:

Knowing U

1

is then equivalent to knowing the deomposition matrix:

D

B

= V U

1

:

Thus the deomposition matrix is obtained from a solution of

U = U

1

U

2

; U

1

; U

2

unimodular ; U

1

; U

2

� 0: (3.7)

Two solutions (U

1

; U

2

) and (U

0

1

; U

0

2

) of (3.7) are alled equivalent, if there

is a permutation matrix X suh that U

0

1

= U

1

X and U

0

2

= X

t

U

2

. Equiv-

alent solutions lead to the same set of Brauer haraters arranged in a

di�erent order. If (3.7) has more than one equivalene lass of solutions,

then we annot deide whih of them determines the deomposition ma-

trix without further information.

In many ases, however, we have additional onditions whih drasti-

ally redue the number of solutions of (3.7). Namely, if we are given a
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set of Brauer haraters B and a set of projetive haraters P, we an

write:

[B℄ = V [BS℄ = (V U

1

) [IBr(B)℄

and

[P℄ =W [PS℄ = (W U

t

2

) [IPr(B)℄

with integer matries V and W . The solutions U

1

and U

2

of (3.7) must

therefore satisfy the following onditions:

V U

1

� 0; and W U

t

2

� 0: (3.8)

So we have the �rst fundamental problem:

Fundamental Problem I: Given V 2 Z

s�m

and W 2 Z

t�m

, and a

unimodular matrix U 2 N

m�m

, �nd all solutions U

1

; U

2

2 Z

m�m

of

U = U

1

U

2

; U

1

; U

2

� 0:

satisfying

V U

1

� 0; and W U

t

2

� 0:

Every solution of the fundamental problem leads to a possible deompo-

sition matrix by equation (3.5): [IBr(B)℄ = U

�1

1

[BS℄. This shows that

at the present state of knowledge the fat that the determinant of the

Cartan matrix D

t

B

D

B

is a power of p does not impose any restritions

on the solutions of the fundamental problem (f. the remarks in [80,

p. 273℄).

We do not intend to solve this fundamental problem in its full gen-

erality. Usually the number of solutions is muh too large to be of any

pratial use. Instead we gradually improve on the two basi sets using

the onditions (3.7) and (3.8) leading to a matrix U with smaller entries.

How this is done in pratise with the help of methods of integral linear

programming will be desribed in Chapter 5.

Example 3.3.1 We ontinue with our example of the prinipal 7-blok

of Co

1

. Let B be the set of the six ordinary haraters whih are not

ontained in BS, restrited to the 7-regular lasses of Co

1

. Then, of

ourse, the matrix V is just the one given in Example 3.1.3.
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We also have some projetive haraters whih annot be expressed

in terms of PS of Example (3.1.5) entirely with non-negative oeÆients.

The orresponding matrix W is as follows.

W =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 �1 �1 1 1 : : 3 �2 2 �1 3 1 1 : 3 4 7 �9 2 �8

1 �1 1 : : 2 6 5 1 : 2 : 5 : : 8 �1 : 2 �4 4

: : : : : : : : : : : 1 : 1 : �1 : : 1 3 :

: : : : : : : : : : : 1 : 1 : : 1 1 �1 �1 :

1 �1 : : : : : : : : �1 1 �1 : : 1 1 1 �1 1 �2

: : : : : : : : : : : : : 1 : : �1 1 2 : 1

: : : 1 2 : : : �2 : : : : : : �1 : : : : :

: : : : : : : : : : : : : 1 : : 1 �1 �2 1 �1

: : : : : : : : : : : : : : 1 : : : : 2 �2

: : : : : : : : : : : 1 : : : : 1 : �1 : �1

: : : : : : : : : : 1 : 1 : : 2 1 �1 �1 �1 :

: : : : : : : : : : 2 : 2 : : 1 : �1 1 �2 1

: : : : : : : : 1 : : : : : : : : �1 1 1 :

: : : : : : : : : : 1 : 1 : 1 1 1 : �2 : �1

: : : : : : : : : : 2 : 2 : : : 1 �2 : �2 1

: : : : : : 1 : : : : : 1 : : 1 : : : �1 :

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

With these data, there are only 4 solutions of the fundamental problem I,

namely, up to a permutation of the olumns, U

1

is one of the matries

given in Table 3.1. There, a; b 2 f0; 1g. We do not intend to give a proof

of this fat here. An indiation of how this is done is given in Chapter 5.

If we are left with a small number of non-equivalent solutions of the

fundamental problem, we an distinguish ases. We take eah solution in

turn and pretend that it leads to the true deomposition matrix. Then

we tensor all irreduible Brauer haraters with themselves, and write

the resulting haraters in terms of the irreduibles. If this leads to

expressions with negative oeÆients, our assumption was wrong and

we onsider the next solution.

In priniple one ould extend the fundamental problem by adding the

onditions arising from tensor produts. Suppose BS = f#

1

; : : : ; #

m

g

and PS = f	

1

; : : : ;	

m

g. Let a

ijl

= h#

i

#

j

;	

l

i. For i = 1; 2, let U

�1

i

=

(u

i

rs

)

r;s

. Then the solution (U

1

; U

2

) whih determines the deomposition
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Table 3.1: Possible deomposition matries for the prinipal blok of Co

1

1 1 : : : : : : : : : : : : : : : : : : : :

276 : 1 : : : : : : : : : : : : : : : : : : :

299 : : 1 : : : : : : : : : : : : : : : : : :

17250 : : 1 1 : : : : : : : : : : : : : : : : :

80730 1 : : : 1 : : : : : : : : : : : : : : : :

94875 : 1 : : : 1 : : : : : : : : : : : : : : :

822250 : : 1 : : : 1 : : : : : : : : : : : : : :

871884 1 : : : : : : 1 : : : : : : : : : : : : :

1821600 : 1 : : : : : : 1 : : : : : : : : : : : :

2055625 : : : 1 : : : : : 1 : : : : : : : : : : :

9221850 : : : : : 1 1 : : : 1 : : : : : : : : : :

16347825 : : : : 1 : : : 1 : : 1 : : : : : : : : :

21528000 : : : : : 1 : 1 : : : : 1 : : : : : : : :

21579129 : : : : : : : : : : : : : 1 1 : : : : : :

24667500 1 : : : 1 : : : : : : 1 : 1 : : : : : : :

57544344 : : 1 : : : 1 : : : 1 : : : : 1 : : : : :

66602250 : : : 1 : : : : 1 a : : : : : : 1 : : : :

85250880 : : 1 1 : : : : : 1 : : : : : 1 : 1 : : :

150732800 : : : : : : : : : 1 : : : : : 1 : : 1 : :

163478250 : 1 : : : 1 : : : : 1 : 1 b : : : : : 1 :

207491625 : : : 1 : : : : : a : : : : : : 1 1 : : 1

matrix must satisfy:

m

X

r=1

m

X

s=1

m

X

t=1

a

rst

u

1

ir

u

1

js

u

2

tl

� 0; for all i; j; l;

sine the expression on the left hand side equals h'

i

'

j

;�

l

i, where ['

i

℄

respetively [�

i

℄ is the i-th row of U

�1

1

[BS℄ respetively U

�t

2

[PS℄.

In the ideal ase, the matrix U in (3.1) is the identity matrix. Then

we have solved our problem.
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Proposition 3.3.2 Let BS and PS be two basi sets suh that the ma-

trix U of their mutual salar produts is the identity matrix. Then BS

onsists of the irreduible Brauer haraters and PS of the PIMs.

Proof. This immediately follows from (3.6), (3.2) and (3.3).

As already mentioned above, MOC tries to reah at this �nal stage by

improving the two basi sets BS and PS step by step by making use of

the onditions (3.8).

We �nally indiate a proof of a fat mentioned in [80, Remark 6.3.34℄,

namely that the information gained by induing Brauer haraters from a

subgroup is the same as that obtained by restriting projetive haraters

to this same subgroup. It is not really neessary to use the language of

basi sets to do so, but it an be used to quantify the information.

LetH be a subgroup of G. We assume that the deomposition matrix

D

H

of H is known. Let F denote the G-H-indution-restrition matrix,

i.e.,

[Irr(G)

H

℄ = F [Irr(H)℄;

where Irr(G)

H

denotes the set of restritions to H of the irreduible

haraters of G. Then, if Irr(H)

G

is the set of haraters of G indued

from the irreduible haraters of H , we have

[Irr(H)

G

℄ = F

t

[Irr(G)℄;

by Frobenius reiproity. Let BS be a basi set for the Brauer haraters

of G. Sine the deomposition map is surjetive, there is an integral

matrix Y suh that

[BS℄ = Y [



Irr(G)℄:

We hoose suh a Y and �x it in the following. Then

[IBr(G)℄ = X [



Irr(G)℄;

with X = U

�1

1

Y . By the surjetivity of the deomposition homomor-

phism and the de�nition of the PIMs, this implies that

[Irr(G)℄ = X

t

[IPr(G)℄:

Now [IPr(H)℄ = D

t

H

[Irr(H)℄, and so

[IPr(H)

G

℄ = D

t

H

[Irr(H)

G

℄
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= D

t

H

F

t

X

t

[IPr(G)℄

= D

t

H

F

t

X

t

U

�t

2

[PS℄

= D

t

H

F

t

Y

t

U

�t

[PS℄:

Thus the information gained by induing the projetive haraters from

H is the following ondition for U

2

oming from (3.8)

(D

t

H

F

t

Y

t

U

�t

)U

t

2

� 0:

On the other hand, restriting the irreduible Brauer haraters of G

down to H we obtain

[IBr(G)

H

℄ = X [



Irr(G)

H

℄

= X F [Irr(H)℄

= U

�1

1

Y F D

H

[IBr(H)℄

= U

2

U

�1

Y F D

H

[IBr(H)℄;

giving exatly the same onditions as above.

3.4 The seond fundamental problem

In general, the two matries of (3.8) have many rows. But if one of these

rows is a sum of others, then the row obviously ontains no ondition

at all and an be deleted. As our experiene shows, a quik proedure

to throw away these obsolete rows is of enormous help. For example, in

the ourse of the alulation of the 7-modular haraters of the Conway

group 2:Co

1

we had to produe more than 10000 projetive haraters

in order to �nd the few whih are of any use. This leads us to the

formulation of our seond fundamental omputational problem. Before

we do this, we give an ad ho de�nition, whih is only needed to formulate

the problem.

De�nition 3.4.1 Let W be a �nite subset of Z

1�s

, i.e., a set of rows of

integers of length s. A subsetW

0

�W is alled essential, if for all w 2W

there are non-negative integers n

v

, v 2W

0

, suh that w =

P

v2W

0

n

v

v.

If the zero vetor is not in the positive Z-span of W , then there is a

unique minimal essential subset of W .
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Fundamental Problem II: Let W be a �nite subset of Z

1�s

. Deter-

mine an essential set W

0

�W , with jW

0

j as small as possible.

In general the above problem is slightly more ompliated sine we

do not have a set of vetors but a sequene with some vetors repeated.

3.5 Relations

If we are given a basi set of Brauer haraters BS and we know how to

write the basi set haraters in terms of the irreduible Brauer hara-

ters, we an derive the deomposition matrix as remarked at the begin-

ning of Setion 3.3. The following notation is onvenient in our situation.

De�nition 3.5.1 A relation is a linear dependene overZ between gen-

eralized haraters. More spei�ly: If B is any basis of G

0

(

^

B), and

if # 2 G

0

(

^

B), then the expression of # in terms of B is alled a relation

with respet to B. A similar notion is used for projetive haraters.

Example 3.5.2 The matrix in Example 3.1.3 gives the relations of the

six ordinary haraters not ontained in BS in terms of this basi set.

The matrix W in Example 3.3.1 gives the relations of some projetives

in terms of the basi set of projetives PS of Example 3.1.3.

If we are given a set BS of ordinary irreduible haraters, restrited

to the p-regular lasses, then in order to show that they form a basi

set it suÆes, as we have seen above, to express every other irreduible

ordinary harater, restrited to the p-regular lasses, as a Z-linear om-

bination of the elements of BS. If this an be done, we have at the same

time found the relations whih are needed to reonstrut the whole de-

omposition matrix.

Sometimes the relations with respet to a basis are stored rather

than the haraters themselves. This is for reasons of spae but also to

simplify and speed up the alulation of inner produts. Let BS be a

basi set of Brauer haraters with dual basis of projetive atoms PA.

Suppose furthermore, that P and B are two sets of projetive haraters

respetively Brauer haraters. Then in order to �nd the matrix hP;Bi

of mutual inner produts, it suÆes to write

[B℄ = V [BS℄ (3.9)
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and

[P℄ =W [PA℄; (3.10)

in order to �nd

hP;Bi =W V

t

: (3.11)

Example 3.5.3 The salar produt of a Brauer harater in the set

f31574400; 191102976; 215547904; 219648000; 299710125; 326956500g

of Example 3.1.3 with a projetive of PS of Example 3.1.5 is given by

matrix multipliation of the rows of matrix in Example 3.1.3 with the

olumns of the matrix of Example 3.1.5.Thus, for example, the Brauer

harater 191102976 has inner produt 1� 1� 1+1� 1� 1+3 = 1 with

the projetive 	

1

and inner produt 1� 1 = 0 with projetive 	

2

.

3.6 Speial basi sets

We keep the notation of the previous setion. The situation is onsid-

erably simpler if we have basi sets of Brauer haraters of a speial

nature.

De�nition 3.6.1 A basi set BS of Brauer haraters is alled speial,

if it is of the form BS = f'

1

; : : : ; '

m

g, where the '

i

are restritions of

ordinary haraters of G to the p-regular onjugay lasses, i.e., '

i

= �̂

j

i

for some �

j

i

2 Irr(B).

Let BS

0

denote a speial basi set and let PA

0

be the orresponding

set of projetive atoms. Then write

[



Irr(B)℄ = S [BS

0

℄: (3.12)

The matrix S thus gives the relations arising from the restritions of the

ordinary haraters to the p-regular onjugay lasses with respet to

the speial basi set BS

0

. In the present version of MOC we always �x

a speial basi set and store the matrix S. In partiular, MOC will only

work if there exists suh a speial basi set.

It is not lear at all whether there is always a speial basi set. In

p-soluble groups there is always one by the theorem of Fong and Swan. If
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the ordinary irreduible haraters in a p-soluble group are sorted in in-

reasing order of their degrees, then the �rst maximal linear independent

subsequene of haraters onsists of the irreduible Brauer haraters.

In bloks with yli defet group there is a speial basi set by the

results of Brauer and Dade. The authors have heked all bloks for

all sporadi simple groups and all possible p, and found a speial basi

set in all ases. In [46℄ it is shown that there is a speial basi set for

groups of Lie type in non-de�ning harateristis under some additional

hypotheses. In searhing for a ounterexample we would �rst try a group

of Lie type in de�ning harateristi.

A speial basi set has various advantages. First of all, eah basi

set harater ontains only modular onstituents of a single blok, and

so the subset BS

0

\ B is a speial basi set of B. This is used to �nd

the ontribution of a generalized Brauer harater to B by (2.11).

The seond advantage of a speial basi set is the fat that it allows

to express a projetive harater in terms of PA

0

without muh work.

Namely, let P denote a set of projetive haraters expressed in terms of

the ordinary irreduible haraters. That is to say we know the matrix

Y = hP; Irr(B)i: (3.13)

We then obtain the matrix

Y

0

= hP;BS

0

i

by just deleting the olumns of Y orresponding to haraters in Irr(B)n

BS

0

. Thus

[P℄ = Y

0

[PA

0

℄: (3.14)

Provided we have a speial basi set of Brauer haraters, this observa-

tion allows to restrit (in an obvious sense) the deomposition matrix to

it, and then give the olumns a new interpretation: These are just the

PIMs expressed in the dual basis of atoms.

If one tries to alulate the deomposition matrix by onstruting

projetive haraters and expressing them in terms of ordinary irre-

duibles, it suÆes to alulate their salar produts with the elements

belonging to a speial basi set. This is often an enormous saving of

spae and time.
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Example 3.6.2 The basi setBS of Example 3.1.3 is speial, and hene

the olumns of the matrix of Example 3.1.5 give the oeÆients in the

expression of the orresponding projetives in terms of the basis PA dual

to BS.

By omparing (3.12), (3.13) and (3.14) with (3.9), (3.10) and (3.11),

we have

Y = Y

0

S

t

:

This an be interpreted as �nding the matrix Y if a set of projetives

is given in terms of PA

0

. This will be important later on, sine in the

proess of improving the projetives MOC uses their expressions via the

matrix Y

0

.

We �nally speialize to the ase that P = PS is a basi set of pro-

jetives. Then, writing

X = hPS; Irr(B)i; and X

0

= hPS;BS

0

i;

we have

X = X

0

S

t

:

By the orthogonality relations we also have

[BS

0

℄ = X

t

0

[BA℄: (3.15)

If B is a set of Brauer haraters, [B℄ = V [BS

0

℄, we obtain

[B℄ = V X

t

0

[BA℄

whih an also be expressed as

hB;PSi = V X

t

0

:

This means that if B is given in terms of BA, i.e., by its inner produts

with PS, say B =W [BA℄, we an express B in terms of BS

0

as follows:

[B℄ =WX

�t

0

[BS

0

℄:
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3.7 Triangular deomposition matries

The solution of the Fundamental Problem I is drastially simpli�ed if

the matrix U is a lower triangular matrix. Sine U is unimodular, the

entries on the main diagonal are all equal to 1. The two matries U

1

and U

2

are then unimodular triangular matries, too. One obtains U

1

,

say, by iteratively subtrating olumns of U from the right (ompare also

[80, 6.3.22℄ and the subsequent remarks). Closely related to this speial

ase is the notion of wedge shape of the deomposition matrix.

De�nition 3.7.1 The deomposition matrix of B has wedge shape, if

the ordinary irreduible haraters an be ordered suh that the deom-

position matrix has the following form:

0

B

B

B

B

B

B

B

B

B

B

B

B

�

1

1

:

� :

:

1

�

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

where the entries above the main diagonal are all 0.

In a symmetri group every deomposition matrix has wedge shape (see

e.g. [80, Theorem 6.3.60℄). The same is true for the general linear

and unitary groups in non-de�ning harateristis, as Dipper [22℄ and

Gek [44℄ have shown.

We obviously have the following onnetion.

Lemma 3.7.2 The deomposition matrix has wedge shape, if and only

if there is a speial basi set of Brauer haraters BS

0

and a basi set

PS of projetive haraters suh that the matrix U of (3.1) is a lower

triangular matrix.





Chapter 4

Data strutures

In this hapter we desribe the prinipal data strutures underlying

the MOC-system. We also present a new and remarkable result due

to H. W. Lenstra on ertain integral bases of abelian number �elds.

This result had been suggested by experimental evidene gained in the

preparation of the MOC-system.

Based on the theory desribed in Chapter 3, MOC onsists of a olle-

tion of FORTRAN-programs and of unformatted FORTRAN-�les, whih

ontain haraters and information about the haraters. The programs

all the subroutine RRR to perform reading and writing of �les and to

do the basi operations on long integers. The �les are used for exhang-

ing information between the di�erent programs and for reording the

alulations, whih have been done. The representation of the various

data is the same for the external and the internal format. The programs

solve very spei� tasks, like tensoring two lists of Brauer haraters

or multiplying two matries. MOC laks a memory management and

a language on top of it. Instead more ompliated tasks are ahieved

by onatenating suitable programs via UNIX Bourne-shell sripts. We

give an example for suh a shell sript in the next hapter. We begin

by desribing the basi data types, whih the programs use, and the

operations, whih are performed on them.

41
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4.1 Long integers

The fundamental data type in MOC is the long integer. A long integer

n is represented as a list of oeÆients with respet to the basis 10

4

. If

n � 0 then

n =

k

X

i=0

a

i

10

4i

; 0 � a

i

� 9999; a

k

6= 0:

The list of oeÆients a

k�i+1

is stored in a 1-dimensional FORTRAN-

array r[ ℄ and 10000 is added to a

0

. That is to say, r[i℄ = a

k�i+1

,

1 � i � k, and r[k + 1℄ = a

0

+ 10000. For example, if n = 123456789

then

r[1℄ = 1; r[2℄ = 2345; r[3℄ = 16789:

In ase n is negative, we store the oeÆients �a

k�i+1

and add 20000

to �a

0

. If n = �123456789, then

r[1℄ = 1; r[2℄ = 2345; r[3℄ = 26789:

In order to do the basi operations on long integers, the FORTRAN

programs all the arithmeti subroutine RRR, whih performs addition,

subtration, multipliation and division of long integers and returns the

result to the alling program. The algorithms used by RRR an be found

for example in Knuth's book [88, Chapter 4.3℄.

4.2 Files

The data stored in memory or on �le onsists of numbers oded as de-

sribed above and of separators whih are numbers in the range between

30000 and 31000. The separators are used as labels, whih indiate the

sort of data, following the separator. The separator 30900 for example

is followed by lass funtions evaluated on ertain onjugay lasses.

MOC keeps trak of the alulation performed for a spei� group G

and a spei� prime p on several �les. We shortly mention the four most

important ones.

(a) The �le G.p ontains the following information: A speial basi set

BS

0

stored under the label 30900, the matrix of relations S stored
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under 30550 expressing the ordinary haraters in terms of BS

0

, a

basi set of projetives PS in terms of the projetive atoms dual to

the speial basi set, an atual basi set of Brauer haraters BS

in terms of the Brauer atoms dual to PS. Furthermore it ontains

information related to the distribution of the haraters into bloks.

Changing from a representation of haraters in a ertain basis to

a representation in a di�erent basis or writing the haraters as

lass funtions is ahieved by using the formulae given in Setion

3.6.

(b) The �le G.p.bras ontains a list of Brauer haraters stored under

the label 30500 expressed in terms of BS

0

. Whenever new Brauer

haraters are generated they are put onto this �le.

() The �le G.p.proj ontains a list of projetive haraters stored

under the label 30700 expressed in terms of the ordinary irreduible

haraters. Whenever new projetive haraters are generated they

are put onto this �le.

(d) The �le G.p.info ontains information onerning the alulations

already performed byMOC. This an be used to give a onventional

proof of the results obtained byMOC. We desribe in a later setion

this important feature in more detail.

4.3 Integers in abelian number �elds

The seond basi data type deals with harater values, whih are alge-

brai integers from abelian number �elds. Our representation of hara-

ter values di�ers from those used in other systems, suh as for example

CAS [104℄. This is motivated by the fat that Brauer harater tables

tend to ontain more irrationalities than ordinary harater tables. One

of the important onsequenes of the new MOC-format for harater

values is that the basi algorithms involving Brauer haraters an be

reformulated as algorithms for Z-latties, avoiding expliit alulations

in ylotomi �elds. TheMOC-format also seems to give a more ompat

representation of a harater table.

Let K be an algebrai number �eld of degree d over Q with ring of

integers R. For performing arithmeti in R we hoose an integral basis
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b

1

; : : : ; b

d

. The elements of R are represented by the oeÆients in this

basis. The addition of two elements is now easily performed by adding

their oeÆient vetors. Next we produe the multipliation matrix of

the basis elements, i.e., we store the oeÆients of all produts b

i

� b

j

.

The multipliation of two arbitrary elements of R is now ahieved by ma-

trix multipliation of the two oeÆient vetors with the multipliation

matries of the basis elements. The �elds K we mainly deal with have a

small degree d over Q . Therefore, we deided to store the multipliation

tables expliitly, sine the ost of storing is relatively small ompared

to the speedup we gain in performing the multipliation by the method

desribed above.

4.4 Charater tables

The harater values of �nite groups are sums of roots of unity and are

therefore algebrai integers of abelian number �elds. As desribed above

the harater values are stored as oeÆient vetors orresponding to

ertain integral bases, whih are to be desribed below. We shall see

that this an be done in suh a way that the resulting harater table is

still a square matrix. The new format of a harater table is based upon

the following onsiderations.

We begin by introduing some notation. If K � L is a Galois ex-

tension of �elds, we let G(L=K) denote its Galois group. Let n be a

positive integer. We write Q

n

for the n-th ylotomi �eld, and '(n) for

the degree of Q

n

over Q , i.e, ' is the Euler funtion. If f is an integer

oprime to n let �f denote the Galois automorphism of Q

n

mapping an

n-th root of unity to its f -th power.

Let G be a �nite group and x 2 G. De�ne Q (x) = Q (�(x) j � 2

Irr(G)) to be the olumn �eld of x. If x has order n then Q (x) is

ontained in Q

n

.

De�nition 4.4.1 Two elements of G are alled algebraially onjugate

if the yli subgroups they generate are onjugate in G. The equiva-

lene lass of x 2 G with respet to this relation is alled the algebrai

onjugay lass of x and denoted by Cl

a

(x). Note that it is a union of

onjugay lasses of G.
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Let y be an element of Cl

a

(x). Then y is onjugate to x

f

with f relatively

prime to n. If � is a harater of G then �(y) = �(x)

�f

.

Proposition 4.4.2 Let x be an element in G of order n. Suppose the

olumn �eld Q (x) has degree d over Q . Then d equals the number of

(ordinary) onjugay lasses in the algebrai onjugay lass Cl

a

(x).

Proof. We put Y = fx

i

j 1 � i � n; gd(i; n) = 1g and write S

Y

for the

group of permutations of Y . The normalizer N = N

G

(hxi) ats on Y by

onjugation. The kernel of the orresponding homomorphism

� : N ! S

Y

is C

G

(x) and so j�(N)j = jN=C

G

(x)j.

The orbits of N on Y are in one to one orrespondene with the

G-onjugay lasses interseting Y non-trivially. The size of the orbits

is jN=C

G

(x)j and the number of orbits is '(n)=jN=C

G

(x)j.

De�ne the monomorphism

 : G(Q

n

=Q ) ! S

Y

;

�k 7! (y 7! y

k

)

and observe that  (G(Q

n

=Q (x))) = �(N). This follows from the remark

preeding the proposition and the fat that two elements a; b 2 G are

onjugate, if and only if �(a) = �(b) for all � 2 Irr(G). Hene d =

jQ (x) : Q j = '(n)=j�(N)j and the assertion follows.

We are now ready to de�ne the MOC-harater table.

De�nition 4.4.3 Let x

1

; : : : ; x

r

be representatives for the algebrai on-

jugay lasses ofG. Let d

i

denote the degree of Q (x

i

) over Q . For eah i,

we hoose an integral basis b

1

(x

i

); : : : ; b

d

i

(x

i

) of Q (x

i

).

The olumns of the MOC-table are indexed by

b

1

(x

1

); : : : ; b

d

1

(x

1

); b

1

(x

2

); : : : ; b

d

2

(x

2

); : : : ; b

1

(x

r

); : : : ; b

d

r

(x

r

)

and the entries of � 2 Irr(G) at the olumns b

1

(x

i

); : : : ; b

d

i

(x

i

) are

given by the oeÆients of the deomposition of �(x

i

) in the basis

b

1

(x

i

); : : : ; b

d

i

(x

i

). By the preeding proposition the MOC-harater ta-

ble is a square integral matrix.
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Example 4.4.4 Let A

5

be the alternating group on �ve letters. The

ordinary harater table is given by :

CAS MOC

2 2 2 . . .

3 1 . 1 . .

5 1 . . 1 1

1a 2a 3a 5a 5b

2P 1a 1a 3a 5b 5a

3P 1a 2a 1a 5b 5a

5P 1a 2a 3a 1a 1a 1 2 3 5 5

2

X.1 + 1 1 1 1 1 1 1 1 1 0

X.2 + 3 -1 . A *A 3 -1 0 1 1

X.3 + 3 -1 . *A A 3 -1 0 0 -1

X.4 + 4 . 1 -1 -1 4 0 1 -1 0

X.5 + 5 1 -1 . . 5 1 -1 0 0

Here, A = (1+

p

5)=2 and �A = (1�

p

5)=2. The integral basis of Q (5A)

in the MOC-table is f1; �+ �

4

g, where � = e

2�i=5

.

We now indiate how a usual harater table an be transformed into a

MOC-harater table and vie versa.

De�nition 4.4.5 Let G(Q (x

i

)=Q ) = f�

i;1

; : : : ; �

i;d

i

g, where the nota-

tion is as in De�nition 4.4.3. Let A

i

be the (d

i

� d

i

)-matrix whose

(j; k)-th entry is

�

i;j

(b

k

(x

i

)):

Let d =

P

r

i=1

d

i

and let A be the (d � d)-blok diagonal matrix whose

i-th blok is A

i

.

Note that (det(A

i

))

2

equals the disriminant of Q (x

i

) over Q ; in parti-

ular, A is invertible. With a suitable ordering of the lasses, we obtain

the usual harater table from the MOC-harater table by a matrix

multipliation:

Usual ordinary table = MOC-Table �A:
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Note that this observation an be used to alulate the blok distribution

of the haraters by using the MOC-table as follows. Let � 2 Irr(G) and

let !

�

be the orresponding entral harater. Let 

i

�

denote the row of

oeÆients of !

�

(x

i

) expressed in the integral basis b

1

(x

i

); : : : ; b

d

i

(x

i

).

Then

[!

�

℄ = [

1

�

; : : : ; 

r

�

℄ �A:

Sine the blok matries A

i

orresponding to p-regular lasses have de-

terminant not divisible by p [105, Lemma I.(10.1), Satz I.(2.11), Korollar

III.(2.10)℄, two haraters � and  are in the same p-blok of G, if and

only if



i

�

� 

i

 

(mod p)

for all i orresponding to p-regular lasses. We thus have proved the

stronger result on blok distribution (see [47, (7.10)℄), namely that two

haraters lie in the same p-blok if and only if the values of their entral

haraters on p-regular lasses di�er by elements of pR.

The MOC-system ontains a data base for the sub�elds L of ylo-

tomi �elds up to a ertain degree. In this data base a �eld L is stored

by the following information: The minimal n suh that L is ontained

in the ylotomi �eld Q

n

, the degree d of L over Q , generators for

the Galois group L = G(Q

n

=L) and an integral basis of L. Eah basis

element is a sum over the elements in an orbit of L ating on the n-th

roots of unity. Suh elements are alled orbit sums in the following. It

is only neessary to store one representative for eah orbit of L whose

orresponding sum is a basis element.

Only reently it has been shown by H.W. Lenstra that there always

exists suh a basis for a given abelian extension over Q [95℄. We are

grateful to him for allowing us to reprodue this previously unpublished

result. It is given in the next setion.

4.5 Lenstra's theorem on integral bases

We keep the notation of the preeding setion. Furthermore, we put

�

m

= exp(2�i=m).

Theorem 4.5.1 (H. W. Lenstra [95℄:) Let L=Q be a �nite abelian ex-

tension of the rational numbers. Let f be the smallest positive integer

suh that L is ontained in the f-th ylotomi �eld Q

f

(the ondutor
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of L). Finally let H be the subgroup of the Galois group G(Q

f

=Q ) whih

�xes L. Then there is an integral basis of L, whih onsists of orbit sums

of H on f-th roots of unity.

Proof. Let p be a prime and k 2 N . We arrange the set of p

k

-th roots

of unity into the following matrix:

1 �

p

�

2

p

: : : �

p�1

p

�

p

k �

p

k�

p

�

p

k�

2

p

: : : �

p

k�

p�1

p

�

2

p

k

�

2

p

k

�

p

�

2

p

k

�

2

p

: : : �

2

p

k

�

p�1

p

.

.

.

.

.

.

.

.

. : : :

.

.

.

�

p

k�1

�1

p

k

�

p

k�1

�1

p

k

�

p

�

p

k�1

�1

p

k

�

2

p

: : : �

p

k�1

�1

p

k

�

p�1

p

We introdue an equivalene relation � on T = h�

p

k
inf1g as follows: For

�; �

0

2 T we put � � �

0

if and only if either � = �

0

or else �

p

= �

0

p

6= 1.

The equivalene lasses are the one element sets f�

i

p

g, 1 � i � p � 1

and the p-element sets onstituted by the elements of a row di�erent

from the �rst of the above matrix. If C is one of the equivalene lasses

ontaining more than one element and if � 2 C, then

X

�2C

Z� = �Z[�

p

℄;

and thus is a free Z-module of rank p� 1. By ounting dimensions, we

�nd

Z[�

p

k ℄ =

M

C2T=�

0

�

X

�2C

Z�

1

A

: (4.1)

We now generalize these observations. Write

f =

Y

p prime

p

k(p)

:

Then

Z[�

f

℄

�

=

O

p prime

Z[�

p

k(p)

℄: (4.2)

From this and the deomposition (4.1) we obtain a similar diret de-

omposition of Z[�

f

℄ whih we are now going to desribe. Let f

0

be
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the produt of the di�erent prime divisors of f . Put S = f� 2 h�

f

i j

f

0

divides j�jg. For � 2 S let d(�) denote the largest squarefree number

suh that d(�)

2

j j�j. We introdue an equivalene relation � on S as fol-

lows: For �; �

0

2 S we put � � �

0

if and only if �

d(�)

= �

0

d(�)

. If � � �

0

,

then j�j = j�

0

j and so our relation is indeed symmetri. From (4.1)

and (4.2), we obtain

Z[�

f

℄ =

M

S=�

0

�

X

�2C

Z�

1

A

: (4.3)

If C is an equivalene lass, � 2 C and d = d(�), then

P

�2C

Z� =

�Z[�

d

℄, and thus the Z-rank of

P

�2C

Z� equals '(d). Thus there is a

subset B

C

� C whih is a Z-basis of

P

�2C

Z�, e.g., B

C

= f��

i

d

j 0 �

i < '(d)g, or B

C

= f��

i

d

j gd(i; d) = 1g.

It is lear that H �xes S and permutes the equivalene lasses. Sup-

pose �rst that H ats �xed point freely on the set of equivalene lasses

of S, i.e., no non-identity element of H �xes an equivalene lass. Then,

by (4.3) and the subsequent remarks, it is lear that we may hoose an

integral basis of Z[�

f

℄

H

, the set of integers in L, onsisting of orbit sums

of H on S. Thus we are done in this ase.

Suppose there is some 1 6= � 2 H and � 2 S suh that �(�) � �.

Let d = d(�). Then, by de�nition, �(�

d

) = �(�)

d

= �

d

. The order of �

d

is divisible by f

0

, and so �(�

f

0

) = �

f

0

. This implies � 2 H

0

, where H

0

is

the intersetion of H with the kernel M of the natural map

(Z=fZ)

�

! (Z=f

0

Z)

�

:

The order ofM is

Q

p

p

k(p)�1

, and the Sylow p-subgroup is yli, exept

if p = 2, and k(2) � 3. Let f

0

= f=2

k(2)

denote the odd part of f . If

k(2) � 3, the Sylow 2-subgroup of M is M

0

�M

1

, with M

0

= f�a j a �

1(mod f

0

) and a � �1(mod2

k(2)

)g and M

1

= f�b j b � 1(mod 4f

0

)g.

The ondition that f be the ondutor of L is equivalent to saying

that for all p dividing f , the group H does not ontain the kernel of the

natural map

(Z=fZ)

�

! (Z=

f

p

Z)

�

: (4.4)

This kernel has order p and is generated by �(1 + f=p).
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So if p is odd or p = 2 and k(2) � 2, then the Sylow p-subgroup of

H

0

is trivial, sine otherwise �(1+ f=p) would be ontained in H , whih

is not the ase by the remarks above. Thus H

0

is a 2-group, k(2) � 3

and so H

0

�M

0

�M

1

. Let a 2 Z suh that �a 2 H

0

has order 2. Then

a � 1(mod f

0

) and one of the following holds:

a �

8

<

:

�1

�1 + 2

k(2)�1

1 + 2

k(2)�1

9

=

;

(mod 2

k(2)

):

By the remarks preeding and following (4.4), H

0

\M

1

= 1, and thus

the last possibility annot our and we must have H

0

= hai, i.e., H

0

is

a yli group of order 2.

So if some non-trivial element �

0

of H �xes the equivalene lass

ontaining �, then �

0

= �a. Furthermore, if 2 is the exat power of 2

dividing j�j, then �

0

(�) = �, and if 4 is the exat power of 2 dividing

j�j, then �

0

(�) = ��. On the other hand, if �(�) = � or �(�) = ��

for � 2 H then �(�) � �. Suppose that 8 divides the order of �. Write

d(�) = 2,  odd. Then � � �

0

(�) = �

a

implies �

2

= �

2a

, and so

�

2(a�1)

= 1. However, 2(a� 1) is not divisible by 8, a ontradition.

Let H

1

= f�a 2 H j a � 1(mod4)g. Then H

0

\ H

1

= 1, and

so H = H

0

� H

1

. We now proeed as follows. Sine H

1

ats �xed

point freely on the equivalene lasses, we an hoose an integral basis

of Z[�

f

℄

H

1

onsisting of orbit sums of H

1

on S. If an orbit sum ontains

an element from an equivalene lass �xed by H

0

, we onsider two ases.

Either the element has order divisible by 4, then H

0

ats as �1 on the

orresponding ZH

1

-module. Otherwise, H

0

�xes every element in the

orbit, in whih ase we inlude the orresponding orbit sum, whih is

now an H-orbit sum, into our basis.

The remaining orbit sums ontain only elements of equivalene lasses

not �xed by H

0

. The orresponding H-orbit sums are taken to yield the

desired integral basis.



Chapter 5

Algorithms

In this hapter we desribe the prinipal algorithms utilized by MOC.

We �rst explain two algorithms for dealing with systems of integral lin-

ear equations using q-adi approximation. Then we desribe the meth-

ods of integral linear programming used to attak the two fundamen-

tal problems. Furthermore we show how all MOC-omputations an be

doumented and how these doumentations are used to give a more on-

ventional proof for the results obtained. Finally we disuss some more

advaned methods whih an be applied if the MOC-system does not

give the omplete answer.

5.1 Integral linear equations

Most of the time during a run ofMOC we are dealing with the problem of

expressing a harater as a Z-linear ombination in terms of a basi set.

In other words we have to solve a system of integral linear equations.

Dixon [25℄ independently suggested the following way of solving this

problem.

Algorithm 5.1.1 (DEC)

PROBLEM: Given m+ 1 rows of integers

w; b

1

; b

2

; : : : ; b

m

2 Z

1�n

;

51
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where b

1

; b

2

; : : : ; b

m

are linearly independent over Z. If possible write w

as a Z-linear ombination of these.

SOLUTION: Let T be the matrix

T =

0

B

�

b

1

.

.

.

b

m

1

C

A

Let q be a (large) prime suh that

�

T , the redution modulo q of T , has

rank m. Set v := w, j := 0 and w

0

:= 0 (zero vetor). Set MAXJ to a

reasonable positive integer, representing the maximum number of loops,

we are willing to spend our time with.

Step 1. Chek whether �v, the redution modulo q of v, is in the F

q

-

span of

�

b

1

;

�

b

2

; : : : ;

�

b

m

. If not, STOP, noting that w is not in the

Q -span of b

1

; b

2

; : : : ; b

m

. Otherwise go to Step 2.

Step 2. De�ne the integers z

ij

, 1 � i � m by

�v =

m

X

i=1

�z

ij

�

b

i

; where � (q � 1)=2 � z

ij

� (q � 1)=2;

and set

w

j+1

:=

j

X

s=0

(z

1s

; : : : ; z

ms

)q

s

T:

Then every oeÆient of w�w

j+1

is divisible by q

j+1

. If w�w

j+1

=

0, then STOP. Else set

v := (w � w

j+1

)=q

j+1

and inrease j by 1. If j is larger than MAXJ then STOP, otherwise

ontinue with Step 1.

Remark 5.1.2 Note that w is in the Q -span of b

1

; b

2

; : : : ; b

m

if and only

if

w =

1

X

j=0

(z

1;j

; : : : ; z

m;j

)q

j

T (5.1)
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in the q-adi metri, where the integers z

ij

are obtained by the above

algorithm. Furthermore w is in the Z-span of b

1

; b

2

; : : : ; b

m

if and only

if (5.1) is �nite. When the algorithm terminates beause j gets larger

then MAXJ, this may have three reasons.

(a) w is in the Z-span but some oeÆient is too large.

(b) w is in the Q -span but not in the Z-span.

() w is not in the Q -span.

Our experiene tells us that q = 101 and MAXJ = 20 are reasonable

hoies for the problems we are onerned with.

The �rst step in the omputation of the deomposition numbers is to

�nd a basi set forG

0

(FG). We start with the restritions of the ordinary

irreduible haraters to the p-regular elements whih form a generating

set forG

0

(FG). We then have to derive from these a basi set ofG

0

(FG).

There are algorithms for onstruting bases of Z-latties from generating

sets, but in our situation we have the additional restrition that our

basis has to onsist of proper Brauer haraters. This is ahieved by an

algorithm due to Parker, alled FBA, whih is based upon Algorithm

5.1.1. We desribe FBA in the following general setup.

Algorithm 5.1.3 (FBA)

PROBLEM: Let X be a Z-lattie with �nite basis '

1

; : : : ; '

m

. De�ne

X

+

to be the subset of X onsisting of all non-negative linear ombi-

nations of the basis elements '

1

; : : : ; '

m

. Suppose that we are given a

�nite set B = f#

1

; : : : ; #

n

g � X

+

generating a sublattie Y of X . Derive

from B a basis of Y lying in X

+

.

SOLUTION: Assume indutively that a subset

~

B = f�

1

; : : : ; �

k�1

g �

X

+

has been found with span equal to h#

1

; : : : ; #

s

i

Z

, s � n, and suh

that �

1

; : : : ; �

k�1

are linearly independent modulo some large prime q.

Step 1. If s = n then STOP and output

~

B. Otherwise take the next

element #

s+1

2 B and try to express it in terms of �

1

; : : : ; �

k�1

using DEC with the prime q. The following ases an our and

are heked in
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Step 2.

(a) If #

s+1

2 h�

1

; : : : ; �

k�1

i

Z

, inrease s by 1 and go to Step 1.

(b) If �

1

; : : : ; �

k�1

; #

s+1

are linearly independent modulo q, in-

rease s and k by 1, replae

~

B by f�

1

; : : : ; �

k�1

; #

s+1

g and go

to Step 1.

() If �

1

; : : : ; �

k�1

; #

s+1

are linearly dependent modulo q but lin-

early independent over Z, replae q by a prime ` suh that

�

1

; : : : ; �

k�1

; #

s+1

are linearly independent modulo `. Replae

~

B by f�

1

; : : : ; �

k�1

; #

s+1

g, inrease s and k by 1 and go to

Step 1.

(d) If � := #

s+1

2 h�

1

; : : : ; �

k�1

i

Q

but � 62 h�

1

; : : : ; �

k�1

i

Z

, we

use the �rst terms of the q-adi expression for the oeÆients

of � determined by DEC to �nd the smallest possible natural

number m

1

with

m

1

� =

k�1

X

i=1

z

i

�

i

;

where z

i

2 Z. Let m = minfgd(m

1

; z

i

) j 1 � i � k � 1g

and suppose m = gd(m

1

; z

j

) > 0. Write m = am

1

+ bz

j

,

a; b 2 Z. For i di�erent from j, let 

i

be the smallest integer

suh that 

i

+ bz

i

m

�1

1

� 0 and de�ne

~

�

j

= b� + a�

j

+

k�1

X

i 6=j



i

�

i

:

Then m

1

~

�

j

is ontained in X

+

and hene

~

�

j

2 X

+

, too.

Replae �

j

by

~

�

j

in

~

B. Inrease n by 1 and put #

n+1

= �

j

.

Do not inrease s in this ase. Go to Step 1.

Theorem 5.1.4 Algorithm 5.1.3 terminates and �nds a Z-basis of Y

ontained in X

+

.

Proof. For any subset B � B we de�ne the weight w(B) of B to be the

pair (r(B); d(B)). Here, r(B) is the o-rank of the Z-span of B in Y .

The number d(B) is the disriminant of hBi

Z

, whih is de�ned in the
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following way. Choose any Z-basis b

1

; : : : ; b

s

of hBi

Z

, and let M denote

the (m� s)-matrix of the oeÆients of b

1

; : : : ; b

s

expressed in the basis

'

1

; : : : ; '

m

of X . Then d(B) = detMM

t

. This number is positive and

independent of the basis hosen for hBi

Z

.

We order the set of weights W (B) = fw(B) j B � Bg lexiograph-

ially. Observe that B generates Y if and only if w(B) is minimal in

W (B).

In eah of the ases ouring in Step 2 of Algorithm 5.1.3, where we

hange

~

B, we derease its weight. This is lear in ases (b) and (), sine

we inrease the rank of the generated lattie. In ase (d) let S denote the

matrix transforming f�

1

; : : : ; �

j

; : : : ; �

k�1

g into f�

1

; : : : ;

~

�

j

; : : : ; �

k�1

g.

Then S is a diagonal matrix with diagonal entries equal to 1, exept

that row j of S has the entries



1

+ bz

1

=m

1

; : : : ; 

j�1

+ bz

j�1

=m

1

; a+ bz

j

=m

1

;



j+1

+ bz

j+1

=m

1

; : : : ; 

k�1

+ bz

k�1

=m

1

:

Thus det(S) = a+ bz

j

=m

1

= m=m

1

< 1. This implies that the new set

~

B has a smaller disriminant.

Finally, by adding �

j

toB the minimum ofW (B) remains unhanged,

sine the new enlarged B still generates the same lattie Y . This proves

that the algorithm terminates. Sine in eah step the set

~

B is linearly

independent over the integers, the �nal suh set is a Z-basis of Y .

5.2 Improving basi sets

Having established the major part of the theory we are now prepared

to give some algorithms for dealing with the two fundamental problems

stated in Setions 3.3 and 3.4. These algorithms are implemented in

the MOC-system and are parts of the program IMPROVE, whih uses

methods of linear programming. There are some remarks onerning

optimization at the end of this setion.

Let us �x some notation. Let PS = f�

1

; : : : ;�

s

g be the basi set of

projetives and BS = f'

1

; : : : ; '

s

g the basi set of Brauer haraters.

We denote by PA = f'

�

1

; : : : ; '

�

s

g and BA = f�

�

1

; : : : ;�

�

s

g the dual
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systems of atoms. Let P and B denote additional sets of projetive re-

spetively Brauer haraters. We denote by U = (h'

i

;�

j

i

ij

) the matrix

of salar produts between BS and PS.

We are now going to restate the �rst fundamental problem. Reall

that we have to �nd all square integral matries U

1

� 0 and U

2

� 0

so that U = U

1

� U

2

subjet to the onditions (3.8). We onsider the

equivalent problem of �nding U

1

� 0 and U

2

� 0 invertible over Z with

U

�1

1

�U �U

�1

2

= E

s

. Operating by U

�1

1

means hangingBS and operating

by U

�1

2

means hangingPS. We are going to hange U aording to (3.8)

hoping to get E

s

as result. We have the two following problems to solve:

1. Prove that '

i

is irreduible or that �

j

is indeomposable. This is

onsidered in x 5.2.1.

2. Improve PS or BS. We shall show that this an be done in several

ways. We present a theorem in x 5.2.2 whih allows to subtrat

irreduible haraters from other ones. Then in x 5.2.3 there is

an algorithm whih omputes haraters lexiographially smaller.

We �nally present a riterion in x 5.2.4 for a harater to be de-

omposable or reduible.

5.2.1 Proving indeomposability

In this paragraph we are going to establish a test for proving irreduibil-

ity of a Brauer harater respetively indeomposability of a projetive

harater. First of all we need the following

De�nition 5.2.1 Let

� =

s

X

i=1

n

i

'

�

i

with n

i

� 0

be a projetive harater deomposed into PA. A generalized projetive

harater

�

0

=

s

X

i=1

n

0

i

'

�

i

is alled a part of � if 0 � n

0

i

� n

i

for all i. A similar notion is used for

Brauer haraters.
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The projetive indeomposable summands of a projetive harater �

are among the parts of �. We are able to state the main riterion for

indeomposability.

Theorem 5.2.2 (PIM-test:) The projetive � is indeomposable if for

all parts �

0

of � with �

0

6= � and �

0

6= 0 there is a Brauer harater

' 2 B with h';�

0

i < 0 or h';�� �

0

i < 0.

Proof. If there is a ' having negative salar produt with �

0

or with

���

0

then one of �

0

, ���

0

is not a genuine projetive. If �

0

is a part

of �, then so is �� �

0

.

Sometimes one an �nd another test for indeomposability in the litera-

ture. It is based on the fat that an ordinary harater is a generalized

projetive harater if and only if it is 0 on all p-singular lasses. Let

� =

P

n

i=1

a

i

�

i

be a projetive harater expressed as a sum of ordinary

haraters. Then we all a harater �

0

=

P

n

i=1

a

0

i

�

i

a subsum of � if

0 � a

0

i

� a

i

;�

0

6= 0 and �

0

6= �. In the test in question we onsider

all subsums of � and hek if one of them is a generalized projetive. If

there is no suh subsum then � is indeomposable. Now we are going to

ompare the two tests.

Proposition 5.2.3 Suppose that BS is a speial basi set and that B

onsists of the restrited ordinary haraters. Let � be a projetive har-

ater. Then the PIM-test presented in Theorem 5.2.2 proves that � is

indeomposable, if and only if there is no subsum of � whih is a gener-

alized projetive.

Proof. Let 	 be an arbitrary generalized projetive harater and

	 =

n

X

i=1

a

i

�

i

its deomposition into the ordinary irreduible haraters. Then we have

h�̂

i

;	i = a

i

. Let �

0

and �

00

= � � �

0

be parts of �. Then �

0

and �

00

are generalized projetive haraters. Suppose there is no subsum of �

whih is a generalized projetive harater. Then neither �

0

nor �

00

is a

subsum. Therefore at least one of them, say �

0

, has a negative oeÆient

in its deomposition into ordinary haraters. Call this oeÆient a

i

.
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But a

i

is the salar produt of �

0

with �̂

i

, as we have seen above. Hene

the PIM-test of Theorem 5.2.2 proves the indeomposability of �.

Now suppose that �

0

is a subsum of � and �

0

is a generalized proje-

tive harater. Then h�̂

i

;�

0

i � 0 and h�̂

i

;�� �

0

i � 0 for all 1 � i � n.

Beause of the hoie of BS this partiular �

0

is heked by our PIM-test

as well. So it an not deide whether � is indeomposable or not.

By adding more Brauer haraters to B (for example Brauer haraters

got by indution) our PIM-test may �nd more PIMs.

Remark 5.2.4 Let � =

P

s

i=1

n

i

'

�

i

, jBj = m and denote by v

k1

; : : : ; v

ks

the oeÆients of the deomposition of the k-th harater in B, 1 � k �

m; when deomposed into BS. Then � is indeomposable if there are

no n

0

1

; : : : ; n

0

s

satisfying the following onditions:

0 � n

0

i

� n

i

for all 1 � i � s;

s

X

i=1

n

0

i

�

s

X

i=1

n

i

� 1 (that is �

0

6= �);

s

X

i=1

n

0

i

� 1 (that is �

0

6= 0);

s

X

j=1

�v

kj

n

0

j

� 0 for all 1 � k � m (that is h';�

0

i � 0 for ' 2 B);

s

X

j=1

v

kj

n

0

j

�

s

X

j=1

v

kj

h'

j

;�i for all 1 � k � m (that is h';�� �

0

i � 0):
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This system of inequations an be written in matries as follows. There

are no n

0

1

; : : : ; n

0

s

satisfying A � x � b where

A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1 0

.

.

.

0 1

1 : : : 1

�1 : : : �1

�v

11

: : : �v

1s

.

.

.

.

.

.

�v

m1

: : : �v

ms

v

11

: : : v

1s

.

.

.

.

.

.

v

m1

: : : v

ms

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

and b =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

h'

1

;�i

.

.

.

h'

s

;�i

�1 +

P

s

j=1

h'

j

;�i

�1

0

.

.

.

0

P

s

j=1

v

1j

h'

j

;�i

.

.

.

P

s

j=1

v

mj

h'

j

;�i

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

and x = (n

0

1

; : : : ; n

0

s

)

t

. How this system of inequalities an be solved is

disussed in x 5.2.6. For the reader who is familiar with linear program-

ming we mention that this system is dual feasible if we use a dual simplex

algorithm and minimize the 0-funtion. Then, of ourse, the zero vetor

is a dual solution. Furthermore we observe that in eah olumn of A the

�rst non-zero entry is 1.

Remark 5.2.5 (i) The number of rows in A depends on jBj. There-

fore it is useful to keep jBj as small as possible.

(ii) By interhanging projetives and Brauer haraters we an test the

irreduibility of a Brauer harater.

Example 5.2.6 In this hapter we are going to alulate the 5-modular

table of the sporadi simple group Co

2

. Its ordinary harater table an

be found in [19℄ as well as the one of the �rst maximal subgroup whih

is isomorphi to U

6

(2):2. We make use of the sixth maximal subgroup,

too. It is isomorphi to (2

1+6

+

� 2

4

):A

8

. The 5-modular tables of both

maximal subgroups an be onstruted by making use only of tensor

produts.

(i) In U

6

(2):2 we have six bloks of defet 1 with the following de-
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omposition matries:

1

+

1 : : :

616

�

: 1 : :

8064

�

: 1 1 :

11264

+

1 : : 1

18711

�

2

: : 1 1

	

4

	

3

	

2

	

1

1

�

1 : : :

616

+

: 1 : :

8064

+

: 1 1 :

11264

�

1 : : 1

18711

+

2

: : 1 1

	

8

	

7

	

6

	

5

22

+

1 : : :

252

�

: 1 : :

4928

�

: 1 1 :

32768

+

1 : : 1

37422

+

: : 1 1

	

12

	

11

	

10

	

9

22

�

1 : : :

252

+

: 1 : :

4928

+

: 1 1 :

32768

�

1 : : 1

37422

�

: : 1 1

	

16

	

15

	

14

	

13

231

+

1 : : :

1386

�

: 1 : :

5544

+

1 : 1 :

14784

�

: 1 : 1

18711

�

1

: : 1 1

	

20

	

19

	

18

	

17

231

�

1 : : :

1386

+

: 1 : :

5544

�

1 : 1 :

14784

+

: 1 : 1

18711

+

1

: : 1 1

	

24

	

23

	

22

	

21

The remaining haraters have defet 0. We write them as 	

25

; : : : ;	

59

,

where their order agrees with the one in [19℄.

(ii) From (2

1+6

+

� 2

4

):A

8

we only need one harater of defet 0 and

the projetives oming from the fator group A

8

. The ordinary harater

table of this maximal subgroup was omputed by Fisher [33℄. We refer

the reader to his survey artile [34℄, where he explains his methods. We

obtain:

1 1 : : :

14 1 1 : :

21 : : 1 :

56 : 1 : 1

64 : : 1 1

�

4

�

3

�

2

�

1

7 1 :

21

1

: 1

21

2

: 1

28 1 1

�

6

�

5

Let �

7

denote the defet 0 harater of degree 15.
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We now use MOC to alulate the 5-modular haraters of the seond

Conway group Co

2

. The Brauer haraters are denoted by their degrees.

The 60 ordinary haraters of Co

2

split into 26 bloks. The 23 haraters

9625

1

; 9625

2

; 23000; 31625

1

; 31625

2

; 63250; 91125

1

; 91125

2

; 221375;

253000; 284625; 442750; 462000; 664125

1

; 664125

2

; 664125

3

; 853875;

1288000; 1771000

1

; 1771000

2

; 1992375; 2004750; 2095875

are of defet 0, and therefore eah forms a blok in its own. The hara-

ters 275, 44275, 113850, 398475 and 467775 belong to the seond blok.

It is a blok of defet 1 and the deomposition matrix an be found in

[56℄. It is

275 1 : : :

44275 : 1 : :

113850 1 : 1 :

398475 : 1 : 1

467775 : : 1 1

In the third blok we �nd the haraters 4025; 12650; 177100; 398475 and

558900. The deomposition matrix an be found in [56℄ as well:

4025 1 : : :

12650 : 1 : :

177100 1 : 1 :

398475 : 1 : 1

558900 : : 1 1

All remaining haraters are in the prinipal blok. We have to �nd 16

irreduible Brauer haraters and PIMs. We indue the projetive har-

aters from the two maximal subgroups and all them 	

1

; : : : ;	

59

and

�

1

; : : : ;�

104

. MOC �nds 16 linearly independent projetive haraters

lying in the prinipal blok. With Lemma 3.1.4 we hek that they form

a basi set. They are olleted in

PS = f	

37

;	

51

;	

46

;	

39

;	

43

;	

42

;	

38

;	

34

;	

49

;

�

6

;	

11

;	

32

;	

31

;	

20

;	

8

;	

4

g:

Next MOC �nds a basi set of Brauer haraters. It onsists of

BS = f1; 23; 253; 1771; 2024; 2277; 7084; 10395

1

; 31878; 37422; 129536;
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184437; 212520; 239085

1

; 368874; 1291059g:

Furthermore we onsider the following three projetives whih do not

deompose into PS with non-negative oeÆients:

	

37

	

51

	

46

	

39

	

43

	

42

	

38

	

34

	

49

�

6

	

11

	

32

	

31

	

20

	

8

	

4

�

4

�1 : : : : : 1 : : : : 2 : : : 1

�

5

�1 1 1 : : 1 : : : : : : : : : :

�

7

�1 : : : : : : : : : 1 : : : 1 :

We have some more Brauer haraters:

'

1

'

2

'

3

'

4

'

5

'

6

'

7

'

8

'

9

'

10

'

11

'

12

'

13

'

14

'

15

'

16

245 916 �1 1 �1 1 : �1 �1 : 1 1 : 1 : : : :

312 984 : 1 �1 �1 : �1 1 : �1 : 1 : 1 : : :

637 560 : : : 1 �1 �1 : : 1 : �1 2 : : 1 :

1 835 008 : �1 : �1 : : 1 : �1 �1 : : : 1 1 1

2 072 576 : : : �3 1 : 3 �1 �2 �1 : �1 1 2 1 1

These projetives and Brauer haraters de�ne relations (see Setion

3.5). With these hoies of PS and BS we get the matrix U of salar

produts displayed in Table 5.1. By Lemma 3.2.3 we know that 	

37

;	

46

and 	

39

are PIMs. We are going to show that 	

43

is indeomposable.

If we deompose 	

43

into the atoms we get

[	

43

℄ = (0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 1) � [PA℄:

Therefore every part 	

0

of 	

43

must be of the form

[	

0

℄ = (0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; n

0

12

; 0; 0; 0; n

0

16

) � [PA℄

where 0 � n

0

12

; n

0

16

� 1. As we should have 	

0

6= 0 and 	

0

6= 	

43

we

get n

0

12

= 0 and n

0

16

= 1 or vie versa. But then we get a negative

salar produt with 2072576. So 	

43

is indeomposable. We obtain the

same result for 	

42

;	

38

;	

49

and 	

32

by using the Brauer haraters

637560 and three times 2072576. Now we are going to prove that 	

34

is

indeomposable. We have

[	

34

℄ = (0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 1; 0; 0; 1) � [PA℄:
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Table 5.1: Salar produts in the prinipal blok of Co

2

	

37

	

51

	

46

	

39

	

43

	

42

	

38

	

34

	

49

�

6

	

11

	

32

	

31

	

20

	

8

	

4

1 : : : : : : : : : : : : : : : 1

23 : : : : : : : : : : : : : : 1 :

253 : : : : : : : : : : : : : 1 : :

1771 : : : : : : : : : : : : 1 : : :

2024 : : : : : : : : : : : 1 : : : 1

2277 : : : : : : : : : : 1 : : : 1 :

7084 : : : : : : : : : 1 : : 1 : : :

10395

1

: : : : : : : : 1 : : : : : : :

31878 : : : : : : : 1 : : 1 : : : : :

37422 : : : : : : 1 : : : : : : 1 : :

129536 : : : : : 1 : : : 1 : : 1 1 : :

184437 : : : : 1 : : : : 1 : 1 : : : 1

212520 : : : 1 : : : 1 : : 2 : : : : :

239085

1

: : 1 : : : : : : : : : : : : :

368874 : 1 : : : 1 : : 1 : : : : 1 1 :

1291059 1 1 : : 1 : 1 1 : : 1 : : : 1 1

Therefore every part of 	

34

must be some

[	

0

℄ = (0; 0; 0; 0; 0; 0; 0; 0; n

0

9

; 0; 0; 0; n

0

13

; 0; 0; n

0

16

) � [PA℄

with 0 � n

0

9

; n

0

13

; n

0

16

� 1. Similarly to the preeding proof we have

1 � n

0

9

+ n

0

13

+ n

0

16

� 2. But for all those parts there is a Brauer

harater having negative salar produt with 	

0

or 	

34

� 	

0

as the

following table shows:

n

0

9

n

0

13

n

0

16

Charater

0 0 1 1835008

0 1 0 312984

0 1 1 312984

1 0 0 312984

1 0 1 312984

1 1 0 1835008

Therefore, 	

34

is indeomposable. We get similar results for �

6

;	

11

;	

31



64 CHAPTER 5. ALGORITHMS

and 	

20

by applying the �ve Brauer haraters. Up to now, we know

that 13 of the 16 projetives belonging to PS are indeomposable. In

the next paragraph we are going to apply our algorithms to 	

51

;	

8

and

	

4

.

5.2.2 Subtrating indeomposables

In this paragraph we are going to present an algorithm for improving

basi sets by subtrating irreduible respetively indeomposable har-

aters with the help of relations. We keep the notation introdued at

the beginning of this setion. To start with, we need some tehnial

de�nitions.

If one of our projetive haraters of PS is known to be a PIM, we

would like to have upper bounds for the number of times it an possibly

be ontained in any of the other projetives of the basi set. Suh bounds

an easily be determined.

De�nition 5.2.7 Assume that �

j

is a PIM for j 2 J , a subset of

f1; : : : ; sg. De�ne non-negative integers (or in�nity) m

ij

; 1 � i; j � s;

by:

(i) If i 62 J , let m

ij

=1.

(ii) If i; j 2 J , let m

ij

= Æ

ij

.

(iii) If i 2 J and j 62 J , then

m

ij

= maxfn 2 N

0

j h';�

j

� n � �

i

i � 0 for all ' 2 B [BSg:

Then obviously m

ij

denotes how often �

i

an possibly be ontained in

�

j

: Therefore m

ij

is alled the maximal multipliity of �

i

in �

j

.

Suppose that � 2 PS is a PIM. If we knew the orresponding irre-

duible Brauer harater ', we ould of ourse �nd the multipliity of �

in any other projetive harater 	 by alulating h';	i. Of ourse,

suh a situation is exeptional. In general, there will be Brauer har-

aters whih have positive salar produt with �, but none of them is

known to be irreduible. However, eah of them ontains ' as a part

(see De�nition 5.2.1). Let # be a Brauer harater with positive salar

produt with �. The idea is to onsider a set of parts of # ontaining '.
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If all these speial parts, whih are alled bits and whih are introdued

in De�nition 5.2.9 below, have positive salar produt with 	, then � is

ontained in 	. We an apply the same idea in a slightly more general

situation.

De�nition 5.2.8 Let � = n

1

'

�

1

+ : : : + n

s

'

�

s

, with n

i

� 0 for all i, be

some generalized projetive harater. Then � is alled multipliity free

if n

i

2 f0; 1g for all 1 � i � s.

De�nition 5.2.9 Let ' 2 BS, ' = n

1

�

�

1

+ : : : + n

s

�

�

s

with n

1

=

h';�

1

i > 0. We are going to de�ne a bit of ' with respet to �

1

if

either �

1

is indeomposable or if �

1

is multipliity free.

(i) Suppose that �

1

; : : : ;�

t

are PIMs for some 1 � t � s. Then

'

0

= n

0

1

�

�

1

+ : : : + n

0

s

�

�

s

is alled a bit of ' with respet to �

1

if

the following onditions are satis�ed:

(a) '

0

is a part of ', i.e., 0 � n

0

i

� n

i

for all i,

(b) n

0

1

= 1; n

0

2

= : : : = n

0

t

= 0; n

0

i

� m

1i

for all i > t,

() h'

0

;	i � 0 and h'� '

0

;	i � 0 for all 	 2 P.

(ii) If �

1

is multipliity free and �

t+1

; : : : ;�

s

are indeomposable, then

'

0

= n

0

1

�

�

1

+ : : :+ n

0

s

�

�

s

is alled a bit of ' with respet to �

1

if

(a) '

0

is a part of ', i.e., 0 � n

0

i

� n

i

for all i,

(b) n

0

1

= 1 and n

0

i

� m

i1

for all i > t,

() h'

0

;	i � 0 and h'� '

0

;	i � 0 for all 	 2 P.

Remark 5.2.10 Let �

1

be a PIM. If jPj = r and v

k1

; : : : ; v

ks

are the

oeÆients of the k-th harater in P when deomposed into PS; 1 �

k � r, then the onditions that ' is a bit with respet to �

1

an be
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expressed by the following system of linear inequalities A � x � b with:

A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1 0

.

.

.

0 1

v

1;t+1

: : : v

1;s

.

.

.

.

.

.

v

r;t+1

: : : v

r;s

�v

1;t+1

: : : �v

1;s

.

.

.

.

.

.

�v

r;t+1

: : : �v

r;s

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

and b =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

minfn

t+1

;m

1;t+1

g

.

.

.

minfn

s

;m

1;s

g

�v

1;1

+

P

s

j=1

v

1j

h';�

j

i

.

.

.

�v

r;1

+

P

s

j=1

v

rj

h';�

j

i

v

1;1

.

.

.

v

r;1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

and x = (n

0

t+1

; : : : ; n

0

s

)

t

. We observe that the number of rows in A and b

depends on jPj. A similar remark applies in ase �

1

is multipliity free.

The following two lemmas justify our de�nition of a bit.

Lemma 5.2.11 If �

1

; : : : ;�

t

are PIMs and ' 2 BS with h';�

1

i > 0

then the irreduible Brauer harater � orresponding to �

1

is a bit of '

with respet to �

1

. In partiular, the set of bits of ' with respet to �

1

is non-empty.

Proof. As h';�

1

i > 0 the irreduible Brauer harater � =

P

s

i=1

n

0

i

�

�

i

orresponding to �

1

is ontained in '. Thus it is a part of ', hene

0 � n

0

i

� n

i

for all i. Clearly, n

0

1

= 1. All other PIMs must have salar

produt 0 with �, so n

0

i

= 0 for 2 � i � t. If i > t then n

0

i

= h�;�

i

i �

m

1i

. As � is a genuine Brauer harater its salar produt with any

projetive is non-negative, therefore ondition () is ful�lled. Thus � is

a bit.

Lemma 5.2.12 Suppose that �

t+1

; : : : ;�

s

are PIMs and that �

1

2 PS

is multipliity free. Let �

1

; : : : ;�

s

denote all the PIMs. We assume that

they are numbered so that �

i

= �

i

for t + 1 � i � s. Furthermore, let

�

1

= v

1

�

1

+ : : :+ v

s

�

s

. Then the following statements hold:

(i) v

i

2 f0; 1g for all i.
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(ii) Let 1 � k � s with v

k

= 1. If ' 2 BS suh that h';�

k

i > 0, then

h';�

1

i > 0 and the irreduible Brauer harater � orresponding

to �

k

is a bit of ' with respet to �

1

. In partiular, the set of bits

of ' with respet to �

1

is non-empty.

Proof.

(i) As �

1

is multipliity free, its deomposition into PA leads to o-

eÆients in f0; 1g. Now every PIM is a non-negative linear ombi-

nation of PA. The result follows immediately.

(ii) Let n

0

1

; : : : ; n

0

s

be the oeÆients of � when deomposed into BA.

Conditions (a) and () of De�nition 5.2.9 are ful�lled as � is on-

tained in ' and is a genuine Brauer harater. We have

h�;�

1

i =

s

X

i=1

v

i

h�;�

i

i = v

k

= 1;

that is n

0

1

= 1. If i > t then

n

0

i

= h�;�

i

i = h�;�

i

i = Æ

ik

:

If t < i 6= k then Æ

ik

= 0 � m

i1

. If i = k then n

0

k

= 1 = m

k1

as

�

1

is multipliity free and ontains �

k

= �

k

exatly one. This

ompletes the proof.

De�nition 5.2.13 Let � 2 PS be indeomposable or multipliity free.

For ' 2 BS with h';�i > 0 and a projetive harater � 2 P let

m(�;�; ') = minfh'

0

;�i j '

0

is a bit of ' orresponding to �g:

Let � 2 PS be indeomposable or multipliity free. There is at least one

' 2 BS suh that h';�i > 0. By the preeding lemmas, there is always

a bit of ' with respet to � and so m(�;�; ') is well de�ned. By our

de�nition of bits, m(�;�; ') is a non-negative integer. The set

fm(�;�; ') j ' 2 BS; h';�i > 0g

is non-empty. It is, of ourse, �nite, sine ' has only �nitely many parts.
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Theorem 5.2.14 Let � 2 PS and � 2 P. If � is indeomposable, let

z = maxfm(�;�; ') j ' 2 BS; h';�i > 0g:

If � is multipliity free, let

z = minfm(�;�; ') j ' 2 BS; h';�i > 0g:

Then �� z �� is a genuine projetive harater.

Proof. As remarked above, z is well-de�ned. Suppose �rst, that � is

indeomposable. Let f�

1

; : : : ; �

s

g be the irreduible Brauer haraters.

Without loss of generality let �

1

be the one orresponding to �. For all

1 � i � s with h'

i

;�i > 0 let z

i

= m(�;�; '

i

). As

�

1

2 f'

0

j '

0

bit of '

i

with respet to �g

we have h�

1

;�i � z

i

. Thus � is ontained at least z

i

times in �. As

z = max z

i

, also �� z �� is projetive.

Suppose now, that � is multipliity free. Let � = v

1

�

1

+ : : : +

v

s

�

s

be the deomposition of � into the PIMs. Then v

i

2 f0; 1g by

Lemma 5.2.12(a). Now let k be suh that �

k

ours in �, i.e., v

k

= 1.

Let �

k

be the irreduible Brauer harater orresponding to �

k

. We shall

show that h�

k

;�i � z. This will imply the result sine � is multipliity

free.

Sine BS is a basi set, there is some ' 2 BS with h';�

k

i >

0. Then �

k

is a bit of ' orresponding to � by Lemma 5.2.12(b).

Hene m(�;�; ') � h�

k

;�i. Sine obviously h';�i > 0, we have

z � m(�;�; ').

In x 5.2.6 we shall show how to solve the problem of alulating z. Chang-

ing projetives and Brauer haraters give analogous results for Brauer

haraters.

Example 5.2.15 Let us now return to our example Co

2

mod 5. As

mentioned above we still have to �nd three more PIMs. First we want

to show that 	

37

is ontained in 	

51

. For this purpose we have to �nd

the irreduible Brauer harater orresponding to 	

37

. But this is a bit

'

0

of ' = 1291059. Its deomposition into the atoms is

['℄ = (1; n

0

2

; 0; 0; n

0

5

; 0; n

0

7

; n

0

8

; 0; 0; n

0

11

; 0; 0; 0; n

0

15

; n

0

16

) � [BA℄
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where for all i we have 0 � n

0

i

� 1. As 	

43

;	

38

;	

34

and 	

11

are

known to be indeomposable we have n

0

5

= n

0

7

= n

0

8

= n

0

11

= 0. So it

remains to solve the following system of linear inequalities (remember

that h'

0

;	

51

i = n

0

2

):

Minimize n

0

2

subjet to

0

B

B

B

B

B

B

B

B

B

B

B

B

�

1 0 0

0 1 0

0 0 1

0 0 1

1 0 0

0 1 0

0 0 �1

�1 0 0

0 �1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

�

0

�

n

0

2

n

0

15

n

0

16

1

A

�

0

B

B

B

B

B

B

B

B

B

B

B

B

�

1

1

1

2

1

1

�1

�1

�1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

where all n

0

i

2 N

0

. As this minimum equals 1 we �nd that 	

51

� 	

37

is a genuine projetive harater. Sine this projetive is an atom it is

indeomposable. Similarly, we show that 	

8

� 	

37

and 	

4

� 	

37

are

projetive. The two Brauer haraters of degree 245916 and 2072576

prove that the resulting projetives are indeomposable. So we have

found all PIMs. The resulting deomposition matrix as well as the table

of irreduible Brauer haraters is printed in the appendix.

5.2.3 Triangular matrix of salar produts

In x 5.2.2 we presented an algorithm for subtrating irreduible or multi-

pliity free haraters. In some ases, it is possible to improve haraters

without knowing whether they are irreduible or not. For this algorithm

we assume that the matrix U of salar produts is lower uni-triangular,

i.e., a

ij

= h'

i

;�

j

i = 0 if j > i. Let f�

1

; : : : ;�

s

g denote the PIMs

and f�

1

; : : : ; �

s

g the irreduible Brauer haraters. We assume that the

PIMs and PS are ordered onsistently, i.e., that �

j

onsists of �

j

and a

sum of �

r

's with r > j. Here we are going to desribe a method whih

allows to subtrat �

i

from some �

j

0

without knowing what �

i

looks

like. Suppose we know for some reason that �

i

is ontained in �

j

0

(see

Lemma 5.2.17 below). The idea now is to subtrat �

i

from �

j

0

. The

possible errors due to the fat that �

i

might not be indeomposable an
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easily be orreted by adding some projetives �

l

for l > i (see The-

orem 5.2.18). This method produes new haraters whih are smaller

than the older ones in the following sense. If we identify a projetive �

with the olumn (h'

1

;�i; : : : ; h'

s

;�i)

t

, we an order the set of proje-

tives lexiographially. The new haraters obtained are then smaller in

this lexiographi ordering.

Lemma 5.2.16 Let �

j

= �

j

+

P

s

r=j+1

b

rj

�

r

be the deomposition of

�

j

into the PIMs. Then b

lj

� a

lj

= h'

l

;�

j

i for all l = j + 1; : : : ; s.

Proof. Let '

l

= �

l

+ � for a ertain Brauer harater �. Then a

lj

=

h'

l

;�

j

i = h�

l

;�

j

i+ h�;�

j

i = b

lj

+ h�;�

j

i � b

lj

:

Lemma 5.2.17 Let � be a projetive harater, � =

P

s

j=1

v

j

�

j

. Sup-

pose that v

i

< 0 for some i. If there exists j

0

< i with v

j

0

> 0 and

jv

i

j >

i�1

X

j=1;j 6=j

0

;v

j

>0

v

j

a

ij

then �

i

is ontained in �

j

0

for a least z times, where

z = d

1

v

j

0

(jv

i

j �

i�1

X

j=1;j 6=j

0

;v

j

>0

v

j

a

ij

)e: (5.2)

(Here dxe for x 2 R denotes the integer y with y � 1 < x � y.)

Proof. Let � =

P

s

j=1;j 6=i;v

j

�0

v

j

�

j

. Then

�� �+ jv

i

j�

i

=

s

X

j=1;v

j

>0

v

j

�

j

(remember that v

i

< 0). Therefore jv

i

j�

i

is ontained in the right hand

of this equation, hene so is jv

i

j�

i

. By Lemma 5.2.16 �

i

is ontained

in �

j

only for j � i and in this ase for at most a

ij

times. So �

i

is

ontained in v

j

0

�

j

0

for at least

jv

i

j �

i�1

X

j=1;j 6=j

0

;v

j

>0

v

j

a

ij

times and therefore �

i

is ontained in �

j

0

at least z times.
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Theorem 5.2.18 Let the notation be as in Lemma 5.2.16. Suppose

that �

i

is ontained z times in �

j

0

for some i > j

0

. Then

~

�

j

0

= �

j

0

� z�

i

+ z

s

X

l=i+1

a

li

�

l

(5.3)

is a genuine projetive harater.

Proof. We have

�

j

0

� z�

i

+ z

s

X

l=i+1

a

li

�

l

= �

j

0

� (z�

i

+ z

s

X

l=i+1

b

li

�

l

) + z

s

X

l=i+1

a

li

�

l

= (�

j

0

� z�

i

) + z

s

X

l=i+1

(a

li

� b

li

)�

l

+ z

s

X

l=i+1

b

li

(�

l

��

l

);

whih by Lemma 5.2.16 is a non-negative linear ombination of genuine

projetives and therefore is a genuine projetive harater.

The following algorithm derived from Lemma 5.2.17 and Theorem 5.2.18

is implemented in theMOC-system. Suppose that P is a set of projetive

haraters. For � 2 P write � =

P

s

j=1

v

j

(�)�

j

.

Algorithm 5.2.19

For all i in 1; : : : ; s do:

For all j

0

in 1; : : : ; i� 1 do:

z := 0;

For all � 2 P do:

If v

j

0

(�) � 0 or v

i

(�) � 0

z

�

:= 0

else

Calulate z

�

aording to (5.2);

�

z := maxfz; z

�

g;



72 CHAPTER 5. ALGORITHMS

od;

If z > 0 alulate

~

�

j

0

aording to (5.3);

od;

od.

If, in the above algorithm, z > 0 for some j

0

, i > j

0

, then

~

�

j

0

is lexio-

graphially smaller than �

j

0

in the sense desribed at the beginning of

this paragraph.

5.2.4 Proving deomposability

Sometimes one an show that a projetive or Brauer harater has to

be divided into a sum of two or more haraters. Let us assume that

there is a projetive � 2 P whih has at least one negative oeÆient

in its deomposition into the basi set. Let � = v

1

�

1

+ : : : + v

s

�

s

be

this deomposition and assume that v

i

< 0 for some i. Hene, �

i

is

ontained in v

1

�

1

+ : : : + v

i�1

�

i�1

+ v

i+1

�

i+1

+ : : : + v

s

�

s

. If �

i

is

indeomposable it has to be ontained in at least one v

j

�

j

for j 6= i.

This an be heked by using an algorithm similar to the one used for

alulating the m

ij

(see De�nition 5.2.7). If there is no suh j then �

i

has to be deomposable.

The easiest and most important ase is that �

i

is the sum of two

indeomposable projetive haraters. To hek this we �nd the two lex-

iographially smallest solutions (n

0

1

; : : : ; n

0

s

) and (n

00

1

; : : : ; n

00

s

) ful�lling

the system of inequalities of Remark 5.2.4. We put 	

1

=

P

n

0

j

'

�

j

and

	

2

=

P

n

00

j

'

�

j

. If 	

1

+	

2

= �

i

, we are done. In two speial ases it is

now easy to get a better basi set:

(i) Assume that 	

1

2 PS. Then f�

1

; : : : ;�

i�1

;	

2

;�

i+1

; : : : ;�

s

g is a

better basi set.

(ii) Assume that the matrix of salar produts is triangular. Let 	

1

=

P

s

k=1

w

k

'

�

k

and 	

2

=

P

s

k=1

x

k

'

�

k

be the deompositions into the

projetive atoms. Then w

k

= x

k

= 0 for all k > i. Without loss

of generality let w

i

= 1. As �

i

= 	

1

+	

2

and U is unitriangular

we get x

i

= 0. In PS we substitute �

i

by 	

1

. Obviously, 	

1

is

smaller than �

i

. Let l = maxfk j x

k

> 0g. Then 1 � l � i � 1.

Now we substitute �

l

by 	

2

and we get the basi set required.
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5.2.5 Solving the seond fundamental problem

As we have seen in the last three paragraphs all algorithms depend on

the size of P and B. So it beomes lear that these two sets have to be

kept small. First of all we remember from Setion 3.4 that we only need

to onsider essential haraters. This is made preise below.

Remark 5.2.20 We assume that there is a set E of projetives satisfy-

ing the following two onditions:

(i) PS � E � P,

(ii) For all � 2 P there exist some v

1

; : : : ; v

s

; w

1

; : : : ; w

r

2 N

0

suh

that

� =

s

X

i=1

v

i

�

i

+

r

X

j=1

w

j

�

j

(5.4)

where E \ (P nPS) = f�

1

; : : : ;�

r

g.

Then E ontains \the same information" as P in the following sense.

Suppose there is a Brauer harater ' and a bit '

0

of ' and a � 2 P nE

with h'

0

;�i < 0 or h' � '

0

;�i < 0. Then we have (without loss of

generality h'

0

;�i < 0) :

� =

s

X

i=1

v

i

�

i

+

r

X

j=1

w

j

�

j

and therefore

0 > h'

0

;�i =

s

X

i=1

v

i

h'

0

;�

i

i+

r

X

j=1

w

j

h'

0

;�

j

i:

This implies h'

0

;�

j

i < 0 for some j. So we do not need �.

So again we have to solve a system of linear inequalities over N

0

whih we get by subtrating

P

s

i=1

v

i

�

i

on the right hand side of equation

(5.4). The problem of integer linear programming is NP-omplete. For

a proof see [14℄. But looking at the proof of Remark 5.2.20 we �nd

that the onditions v

1

; : : : ; v

s

; w

1

; : : : ; w

r

� 0 are suÆient. So we are

able to state the problem again, now over the �eld of real numbers.



74 CHAPTER 5. ALGORITHMS

In [83℄ one an �nd an polynomial algorithm for solving this problem.

Nevertheless, we use an ordinary simplex algorithm for the following

reasons: The solution an be onstruted expliitly. So, by heking

whether it satis�es the inequalities, errors due to trunation are avoided.

Finally, it is quite fast. Our task is now:

Find a set E of projetives ful�lling:

(i) PS � E � P,

(ii) For all � 2 P there exists some v

1

; : : : ; v

s

; w

1

; : : : ; w

r

2 R

�0

with

� =

s

X

i=1

v

i

�

i

+

r

X

j=1

w

j

�

j

where E \ (P nPS) = f�

1

; : : : ;�

r

g.

Here is our algorithm for solving this problem:

Algorithm 5.2.21 Step 1. Let E := PS; F := P.

Step 2. For all � 2 F nE do: Try to solve

� =

s

X

i=1

v

i

�

i

+

r

X

j=1

w

j

�

j

for v

i

; w

j

� 0;

where E n PS = f�

1

; : : : ;�

r

g. For this purpose we deompose �

and �

j

into f�

1

; : : : ;�

s

g and denote by b

1

; : : : ; b

s

and a

j1

; : : : ; a

js

the resulting oeÆients. Then we have to �nd a solution w =

(w

1

; : : : ; w

r

), v = (v

1

; : : : ; v

s

) and v

i

; w

j

2 R

�0

for the system

C � x = b where b = (b

1

; : : : ; b

s

)

t

, A = (a

ij

)

ij

, C = [A;E

s

℄ and

x = [w

t

; v

t

℄. We multiply eah equation by �1 or +1 so that

the right hand side of any equation is non-negative. Let

�

C and

�

b

denote the resulting oeÆients. Now we introdue some arti�ial

variables y

1

; : : : ; y

s

whih have to be greater or equal to zero and

augment the system as follows:

�a

11

x

1

+ : : : + �a

1;r+s

x

r+s

+ y

1

=

�

b

1

.

.

.

.

.

.

.

.

.

.

.

.

�a

s1

x

1

+ : : : + �a

s;r+s

x

r+s

+ y

s

=

�

b

s
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Then the system is feasible by setting x

i

= 0 and y

i

=

�

b

i

. Now we

minimize the funtion

f = y

1

+ : : :+ y

s

:

This funtion ounts how many arti�ial variables we do need to

make the system solvable. If f has a minimum equal to 0, the

original system is solvable otherwise it is not. If � is a non-negative

linear ombination of elements in E throw it away, i.e. put F :=

F n f�g.

Step 3. If F 6= E take a new vetor 	 2 F nE and put E := E [ f	g.

For example, hoose a vetor 	 2 F n E with minimal sum of

oeÆients. Go to 2.

Example 5.2.22 Let us go bak to our example Co

2

mod 5. One useful

method for generating projetives is tensoring haraters of defet 0 with

Brauer haraters. Here we tensor 91125

1

(it is of defet 0) with 275

and restrit the resulting projetive to the prinipal blok. We all this

projetive �. Its deomposition into the �rst PS we took for Co

2

mod

5 is

� = �	

37

+	

51

:

As (using the same notation as in Example 5.2.6) we have

�

5

= �+	

46

+	

42

;

we ould have thrown away �

5

. Of ourse, the �nal result would have

been the same.

5.2.6 An all-integer integer simplex algorithm

As seen in the earlier paragraphs we are given the following problem in

linear programming: Let A 2 Z

m�n

; b 2 Z

m

and  2 Z

n

. Then we

have to �nd minf

t

xg subjet to x 2 N

n

0

and Ax � b where we take �

in eah omponent. So this problem is similar to that whih is solved

by a simplex algorithm. The main di�erene is the fat that we have

to �nd integral solutions x. So we are interested in an algorithm only

using integers in order to avoid errors due to trunation. This problem

was solved by R.E.Gomory in 1963 [48℄. We use this Gomory algorithm
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to alulate the minimum taken over all bits and to hek whether a

harater is irreduible (in this ase we minimize the 0-funtion). The

Gomory algorithm is based on the dual simplex algorithm. Here we are

not going to explain the whole theory of duality and linear programming.

For details see [18℄. Our implementation is based on the book of Burkard

[14℄. Similarly to Algorithm 5.2.21, Step 2, we �rst augment the system

of inequations by introduing some arti�ial variables in order to get a

system of equations. We are going to explain only how we get integral

solutions for the problem. We put

a

00

= 0;

a

0j

= 

j

for j = 1; : : : ; n;

a

i0

= b

i

for i = 1; : : : ;m

and write these numbers in the following table:

x

1

x

2

: : : x

n

a

00

a

01

a

02

: : : a

0n

x

n+1

a

10

a

11

a

12

: : : a

1n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x

n+m

a

m0

a

m1

a

m2

: : : a

mn

This a shortened way of writing

z = min! =

n

X

j=1

a

0j

x

j

subjet to

n

X

j=1

a

ij

x

j

+ x

n+i

= a

i0

for i = 1; : : : ;m:

As mentioned above, this algorithm is based on the dual simplex algo-

rithm. We assume now that there is a solution for the dual problem

suh that the �rst non-zero element in eah olumn a

j

for 1 � j � n

is positive. In the two algorithms presented in xx 5.2.1 and 5.2.2 these

onditions are satis�ed as remarked in 5.2.4 and 5.2.10. Suppose now
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that the last solution the algorithm has found while optimizing has a

non-integral oeÆient. Then we have to exlude this point from the

simplex. So we assure that all verties of the simplex have integral o-

eÆients. The optimal solution is found if all b

i

for i = 1; : : : ;m are

non-negative. Otherwise one of the b

i

is negative. From now on we �x

this i. We are going to onstrut a new restrition out of the i-th row.

To make the algorithm beoming all-integer the pivot element will be-

ome �1. We will repeat this until we get the optimal solution or we get

a ontradition so that there is no solution. Now we are going to make

the new restrition. Let a

ij

as de�ned above. If � > 0 and a is a real

number then a an be written as

a = �[

a

�

℄ + r

a

with 0 � r

a

< �

where [�℄ denotes the Gaussian funtion. Now let a

i0

< 0 for some

1 � i � m. The orresponding restrition is

a

i0

= a

i1

x

1

+ : : :+ a

in

x

n

+ 1 � x

n+i

:

Therefore we get

��[

a

i0

�

℄+r

0

= (��[

a

i1

�

℄+r

1

)x

1

+: : :+(��[

a

in

�

℄+r

n

)x

n

+(��[

1

�

℄+r

n+i

)x

n+i

and then

n

X

j=1

r

j

x

j

+ r

n+i

x

n+i

= r

0

+ �f[

a

i0

�

℄�

n

X

j=1

[

a

ij

�

℄x

j

� [

1

�

℄x

n+i

g:

Sine r

j

� 0 and x

j

� 0 for j = 1; : : : ; n; n + i the left hand of this

equation is non-negative. Also, the term in brakets is integral. Let

�x = [

a

i0

�

℄�

n

X

j=1

[

a

ij

�

℄x

j

� [

1

�

℄x

n+i

:

If �x < 0, then �x � �1, hene ��x � ��. As r

0

< � we would have r

0

+��x

being negative, a ontradition. In this algorithm we are going to hoose

� > 1. Then [

1

�

℄ = 0 and we get the restrition

�x = [

a

i0

�

℄�

n

X

j=1

[

a

ij

�

℄x

j

� 0:
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From this onstrution we get that every integral point of the given

problem satis�es this restrition. We are going to hoose a � suh that

the pivot element will beome �1. Hene the system will remain integral

after pivoting. In the dual simplex algorithm the olumn s ontaining

the pivot element is determined by

a

0s

[

a

is

�

℄

= maxf

a

0j

[

a

ij

�

℄

j a

ij

< 0; j = 1; : : : ; ng:

If there is no suh a

ij

< 0 then the system is not solvable. As we are

going to hoose � suh that [

a

is

�

℄ = �1, we get

�a

0s

= maxf

a

0j

[

a

ij

�

℄

j a

ij

< 0; j = 1; : : : ; ng:

But [

a

ij

�

℄ is an integer, less or equal to �1. If we put

�

j

= [

a

ij

�

℄

we have

�a

0s

�

a

0j

�

j

� �a

0j

;

hene s is determined by

�a

0s

= maxf�a

0j

j a

ij

< 0; j = 1; : : : ; ng:

This is equivalent to

a

0s

= minfa

0j

j a

ij

< 0; j = 1; : : : ; ng:

If s is not determined uniquely onsider the next rows of the table to

make a deision. We determine for k = 1; 2 : : :

a

ks

= minfa

kj

j a

ij

< 0; a

k�1;j

minimal for a

ij

< 0g

until the minimum is unique. So we ahieve that for all j with a

ij

< 0

the �rst element of the vetor a

s

� a

j

is negative. We are now going to

examine how to hoose � best. After pivoting we get a new value

�a

00

= a

00

+ [

a

i0

�

℄a

0s
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for the funtion to be minimized. In order to derease the value as muh

as possible we have to hoose � as minimal as possible. But we have to

make sure that the �rst non-zero element �a

kj

of the olumns j = 1; : : : ; n

with j 6= s is

�a

kj

= a

kj

+ [

a

ij

�

℄a

ks

> 0:

Let i

0

be the minimum of i(j) and i(s) where i(j) is �rst index for whih

a

i(j);j

6= 0 (and therefore a

i(j);j

> 0). Similarly, let i(s) be the �rst index

of rows with a

i(s);s

> 0. Then �a

i

0

j

beomes the �rst non-zero element

of olumn j. If a

ij

� 0 then we have �a

i

0

j

> 0 for all possible � as we

either have a

i

0

j

= 0 and a

i

0

s

> 0 or a

i

0

j

> 0 and a

i

0

s

� 0. But if we

have a

ij

< 0 and a

i

0

j

> 0 then we get a new restrition for � resulting

from the equation determing �a

kj

. As 0 � a

is

� a

i0

we get

�1 � �

j

> �

a

i

0

j

a

i

0

s

:

As � has to be hosen as small as possible and a

ij

< 0 we have to hoose

�

j

as small as possible, too. Therefore we take �

j

to be the smallest

integer greater than �

a

i

0

j

a

i

0

s

. Now for j 2 J = fj j a

ij

< 0g we put:

�

j

=

�

a

ij

�

j

if a

i

0

s

> 0

0 otherwise

:

Then

� = maxf�

j

j j 2 Jg

satis�es all onditions, i.e. [

a

is

�

℄ = �1, the value of the funtion being

optimized dereases as muh as possible and after pivoting in all olumns

the �rst non-zero element is positive.

Algorithm 5.2.23 Gomory's all-integer integer algorithm (see [14℄) for

solving the problem

n

X

j=1

a

0j

x

j

= min!

subjet to Ax � a

0

for x

j

2 N

0

and 1 � j � n. We assume that the

problem is dual feasible. Then:
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1. If for all i = 1; : : : ;m

a

i0

2 N

0

then the optimal solution is found. Stop. Otherwise go to Step 2.

2. Let

~r := minfi j a

i0

=2 N

0

; i = 1; : : : ;mg:

3. If a

~rj

� 0 for all j = 1; : : : ; n then the problem is not solvable.

Stop. Otherwise let

J := fj j j > 0 and a

~rj

< 0g:

4. Determine s to be the index of the pivoting olumn by

a

0s

:= minfa

0j

j j 2 Jg:

If s is not determined uniquely repeat for i = 1; 2; : : :

a

is

:= minfa

ij

j j 2 J and a

i�1;j

minimal g

until the minimum is determined uniquely.

5. For j 2 J let i(j) be the �rst index of rows suh that a

i(j);j

6= 0.

Determine �

j

to be the smallest integer for whih

a

i(j);j

+ �

j

a

i(j);s

> 0:

If a

i(j);s

= 0 put �

j

:= �1.

6. For j 2 J let

�

j

:=

�

0 if �

j

= �1

a

~rj

�

j

; otherwise

and let

� := maxf�

j

j j 2 Jg:

If � = 1, replae � by 1+" where " is some arbitrary little number.

7. For j = 0; 1; : : : ; n put

a

m+1;j

:= d

a

~rj

�

e

and add a

m+1;0

; a

m+1;1

; : : : ; a

m+1;n

as (m+ 1)st row to the table.

Let r := m := m+ 1.
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8. Put

�a

rj

:= �a

rj

for j = 0; 1; : : : ; n; j 6= s;

�a

ij

:= a

ij

+ a

is

a

rj

for i = 0; 1; : : : ;m� 1; j = 0; 1; : : : ; s� 1; s+ 1; : : : ; n:

9. Let for i = 0; 1; : : : ;m; j = 0; 1; : : : ; n; j 6= s

a

ij

:= �a

ij

and go to 1.

5.3 Automati proofs

We one more emphasize the fat that MOC does not provide an al-

gorithm for alulating the irreduible modular haraters for a given

�nite group. No suh algorithm is yet known. Rather MOC provides a

olletion of algorithms for various purposes to support the alulation

of some deomposition numbers and irreduible Brauer haraters.

Finding the modular haraters of a �nite group is a kind of problem

where a result an be heked with muh less e�ort than was needed to

obtain it. We have to produe a very large number of Brauer haraters

and projetive haraters to begin with. If the irreduible respetively in-

deomposable haraters happen to be among those of our pool, then we

would �nd them by means of the salar produt (see Proposition 3.3.2).

The methods desribed in Setion 2.5 for onstruting haraters do

not allow to selet good andidates beforehand. Usually most of the

haraters generated are not needed at all. Only after the onstrution

an one reognise those whih really ontain the information wanted.

The other haraters onstruted during the session an be thrown away.

For the �nal proof, whih an usually be given in a onventional form,

it suÆes, of ourse, to keep the \good guys".

Every run of MOC is doumented on an info-�le orresponding to the

pair (G; p). Some additional information, for example output of ertain

programs is stored on this �le, whih is alled G.p.info. This method

of automati doumentation is very muh supported by the UNIX op-

erating system. As already mentioned, MOC onsists of a olletion of

FORTRAN programs and UNIX Bourne-shell sripts. The FORTRAN
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programs serve some well de�ned purposes suh as, for example, matrix

multipliation or solving integral linear equations. Transfer of data is

via �les, and the �les are moved by shell sripts aording to the needs

of the programs.

Let us give an example of suh a shell sript. InMOC, the atual basi

set PS of projetive haraters is stored on the �le G.p under the label

30700 as a matrix X

0

, expressing PS in terms of the projetive atoms

PA

0

orresponding to the speial basi set BS

0

. By equation (3.14)

we have X

0

= hPS;BS

0

i. The following shell sript, alled bsinba

transposes the matrix X

0

stored under label 30700 on the �le G.p. By

equation (3.15) this expresses the speial basi set BS

0

in terms of the

Brauer atoms BA orresponding to PS. Sine the FORTRAN program

transp to transpose a matrix expets the matrix under label 30900, we

have to merge it �rst from 30700 to 30900. The shell sript get opies

the �le G.p to the urrent working diretory, whih for safety reasons

should always be di�erent from the diretory ontaining the data-�les.

The �rst argument of the following shell sript is the prime p, the seond

the name of the group G.

set -x

# bsinba

rm -f t1 t2 t3 t4

get $2.$1 || exit

p $2.$1 t1

p t1 t2

merge <<%

30900

0

30700

%

rm -f t2

mv t3 t1

transp

mv t2 t3

rm -f t1 t2

The shell sript expressing the Brauer atoms in terms of the speial
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basi set BS

0

is alled bainbs. By equation (3.15) it has to invert the

matrix X

t

0

.

set -x

#

# bainbs

#

# Expresses the Brauer atoms orresponding to

# the atual basi set of projetives, whih

# are stored in $2.$1 under the label 30700,

# in terms of the speial basi set.

# The result is put onto file t3.

#

# ``bsinba'' is the program inverse to ``bainbs''

#

bsinba $1 $2

mv t3 hilf

#

# ``invers'' alulates the inverse of a matrix

#

invers hilf

rm t1 t2

mv hilf.inv t3

The following shell sript alulates the set of Brauer atoms BA as lass

funtions. For this purpose it has to multiply the matrixX

�t

0

with [BS

0

℄,

the latter being stored on G.p under the label 30900.

set -x

#

# bratoms

#

# This program gives the $1-modular

# Brauer atoms of group $2 orresponding

# to the atual basi set of projetive

# haraters as lass funtions.

# The answer is stored in $2.$1.bat.

#
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bainbs $1 $2

mv t3 t2

get $2.$1 1

matmul2

mv t3 $2.$1.bat

rm -f $2.$1 t1 t2 t4

We now give an example of an info-�le whih douments the session for

determining the Brauer haraters for the Mathieu groupM

11

modulo 5.

Fri Mar 20 11:25:16 MET 1992

/home/euterpe/hiss/moha/proggy/prp

pst run

ft run

projetives no 1 - 5 obtained by:

defet 0 haraters

relations stored under 30550

Brauer haraters no 1 - 10 obtained by:

ordinary haraters restrited to p-regular lasses

Fri Mar 20 11:25:56 MET 1992

/home/euterpe/hiss/moha/proggy/defzo

projetives no 6 - 55 obtained by:

tensoring ordinaries with defet 0 haraters

option:1:all ordinaries tensor all defet 0 haraters

Fri Mar 20 11:26:17 MET 1992

/home/euterpe/hiss/moha/proggy/basepro

input label (i5)

insert depth of searh (i3), e.g. 10

input blok-number (i3)

number of basi haraters found is 4

numbas= 10011 10012 10010 10007
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Fri Mar 20 11:27:21 MET 1992

/home/euterpe/hiss/moha/proggy/protest

projetive nr 11 in blok 1 is indeomposable,

beause it is an atom

projetive nr 12 in blok 1 is indeomposable,

beause it is an atom

projetive nr 10 in blok 1 is indeomposable,

beause it is an atom

projetive nr 7 in blok 1 is indeomposable,

beause it is an atom

The info-�le serves two prinipal purposes. It an be used to repeat

the alulations for a partiular group and prime. This may be neessary

if some information is lost by aident or if the �les get too large and

immovable. In a seond run one an usually proeed muh faster, beause

one already knows whih of the steps have been redundant.

The seond purpose is of ourse the reonstrution of those haraters

whih are used in the proof. Every harater generated is supplied with

an identi�ation number. In partiular, every irreduible Brauer har-

ater or indeomposable projetive harater has its generating number,

whih an be used to trae bak to its origin with the help of the info-

�le. We even have programs whih do the trae-bak automatially, at

least if the harater was obtained by some standard onstrutions. This

gives the method of automati proofs. In [56℄ about two thirds of the

proofs were obtained in this fashion. If suh a proof is written down in

onventional form everybody an reonstrut the haraters by the de-

sription we have given and thus hek the proof by hand. An example

of suh a proof is given in Chapter 6, where we have olleted all the in-

formation neessary to determine the deomposition numbers modulo 7

of Conway's largest group Co

1

.

5.4 Extensions

There are some features whih we would like MOC to have, but whih

are still not implemented. The �rst and most important one is the addi-

tional information one obtains from duality and group automorphisms.

For instane, a real valued ordinary harater must be ontained in a
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PIM and its dual with equal multipliity. This simple observation and

analogous statements in the ase of group automorphisms an be used

to improve the algorithms desribed in Setion 5.2 onsiderably. This is

one of the next things we are planning to add to MOC.

The additional information available in harateristi 2 by Fong's

lemma (see 5.5.3 below) has not been implemented yet.

There are examples suh as the Rudvalis group in harateristi 5

whih seem to be very hard to settle with the urrent methods of MOC.

Here, no improvement of the haraters as desribed in Setion 5.2 is

possible, but still there seems to be enough information to rule out most

of the ases. Here, it really is desirable to have a program whih tries to

solve Fundamental Problem I in its full generality. We plan to do some

experiments with these fatorization problems.

Finally, we would very muh like to have a general trae-bak pro-

gram for writing down more ompliated proofs. The urrent versions

annot ope with the numerous possibilities for generating and improv-

ing haraters.

5.5 Advaned methods

As remarked in the introdution, MOC uses only elementary methods

to alulate deomposition numbers. In large examples, however, these

methods are not suÆient to �nd all of the irreduible Brauer haraters.

One of the reasons for this is the fat that there may be proper

ordinary haraters whih vanish on all p-singular lasses and thus are

virtual projetive haraters, but whih are not haraters of projetive

modules. This means that in the deomposition matrix there are two

olumns, orresponding to PIMs � and 	, suh that one is ontained

in the other, in other words, ��	, say, is a proper ordinary harater.

This happens for example in the ase of the prinipal 3-blok of the

seond Janko group J

2

, whih has the deomposition matrix displayed

in Table 5.2 (for a proof see [55℄). In this example �

2

� �

6

is a proper

ordinary harater. Table 5.3 gives the harater table of a basi set

of Brauer haraters. The table is given in the MOC-harater table

format. We use the integral bases f1; (�1 +

p

5)=2g for the ouring

irrationalities.

Let ' denote the irreduible Brauer harater orresponding to �.
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Table 5.2: The 3-modular deomposition of J

2

�

1

�

2

�

3

�

4

�

5

�

6

�

7

�

8

1 1 : : : : : : :

14 1 1 : : : : : :

14 1 : 1 : : : : :

21 : : : 1 : : : :

21 : : : : 1 : : :

70 : 1 : : : 1 : :

70 : : 1 : : : 1 :

160 1 1 1 : : : : 1

175 : : : 1 1 : : 1

224 : 1 : : 1 1 : 1

224 : : 1 1 : : 1 1

300 1 2 2 : : 1 1 1

336 2 1 1 1 1 : : 2

The proof that 	 is not a diret summand of the projetive with har-

ater � is usually ahieved by giving a lower bound for the multipliity

of ' in the redution modulo p of some ordinary harater.

In the above example, ' is an irreduible Brauer harater of de-

gree 13, and to show that �

2

��

6

is not projetive, is the same as show-

ing that ' is ontained in the redution modulo 3 of the �rst ordinary

harater of degree 70. By inspeting the table of Brauer haraters 5.3

we see that

169 = 13

1


 13

1

= 1� 13

1

+ 21

1

+ 70

1

+ 90;

and thus 13

1

must be ontained in 70

1

. This example is typial inso-

far as we have used tensor produts of Brauer haraters to obtain the

bounds. The larger the group and hene the degrees of the irreduible

Brauer haraters, the weaker gets this method. Sometimes it helps to

distinguish ases as indiated in Setion 3.3 with the help of Brauer

haraters obtained by tensor produts.

If all this fails, there are more advaned methods available, whih

make use of struture theory of G-modules, whih we are now going to
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Table 5.3: Some 3-modular haraters of J

2

1A 2A 2A 4A 5A 5A 5C 5C 7A 8A 10A 10A 10C 10C

1 1 1 1 1 0 1 0 1 1 1 0 1 0

13 �3 1 1 2 3 1 1 �1 �1 �1 1 0 1

13 �3 1 1 �1 �3 0 �1 �1 �1 �2 �1 �1 �1

21 5 �3 1 4 1 2 2 0 �1 �1 �1 0 0

21 5 �3 1 3 �1 0 �2 0 �1 0 1 0 0

70 �10 �2 2 5 5 0 0 0 0 0 �1 0 0

70 �10 �2 2 0 �5 0 0 0 0 1 1 0 0

133 5 1 �3 �7 0 �2 0 0 1 1 0 0 0

36 4 0 4 �4 0 1 0 1 0 0 0 �1 0

90 10 6 �2 5 0 0 0 �1 0 1 0 0 0

63 15 �1 3 3 0 �2 0 0 1 �1 0 0 0

225 �15 5 �3 0 0 0 0 1 �1 0 0 0 0

189 �3 �3 �3 3 3 2 1 0 1 0 1 �1 �1

189 �3 �3 �3 0 �3 1 �1 0 1 �1 �1 0 1

169 9 1 1 13 3 2 1 1 1 2 �3 1 �1

desribe. For every suh method we also give an example where it an be

applied. In fat, all the triks to be desribed in the following have ome

to mind only when we were trying to solve the orresponding problems.

Let S be one of the rings fK;R; Fg of our p-modular system for G.

We only onsider SG-modules X , whih are free and �nitely generated

as S-modules. Let X and Y be two suh SG-modules. We set

[X;Y ℄ = rank

S

Hom

SG

(X;Y ):

The SG-module dual to X is denoted by X

�

.
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5.5.1 Assoiativity of the tensor produt

Let X , Y and Z denote three SG-modules. Then there is a anonial

isomorphism of SG-modules:

(X 
 Y )
 Z

�

=

X 
 (Y 
 Z):

This an sometimes be used if the dimensions of the modules involved

in the tensor produt are small.

5.5.2 Adjointness

Let X , Y and Z denote three SG-modules. We then have (see [93,

Corollary II.6.9℄)

[X 
 Y; Z℄ = [X;Y

�


 Z℄:

This has been used in the �nal state of our example of the Conway group

modulo 7 (see Setion 6.2), and also in the proof for the Janko group

J

2

modulo 5 [55℄. This method an be used either to show that some

omposition fator must our in a ertain tensor produt (J

2

modulo 5)

or to show that it annot our (Co

1

modulo 7).

It is worth noting that via tensor produts one an transfer informa-

tion between di�erent bloks with the help of this adjointness property.

This is partiularly helpful if some of the bloks involved are of defet 1,

sine for those one an write down all the indeomposables, if the Brauer

tree is known. An example of a suessful appliation is provided by the

seond Janko group J

2

modulo 3.

5.5.3 Nakayama relations

LetH be a subgroup of G and letX be an SG-module, Y an SH module.

Then we have the Nakayama relations (or Frobenius reiproity) (see [93,

Corollary II.1.4℄)

[X;Y

G

℄ = [X

H

; Y ℄; and [Y

G

; X ℄ = [Y;X

H

℄:

This has been applied for instane in the alulation of the modular

haraters for the Tits group ([50℄).
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5.5.4 Self duality

If an FG-module X is self dual, i.e., X

�

=

X

�

, then its sole series is the

dual of its Loewy series (see [93, Lemma I.8.4(i)℄). In partiular, any

self dual omposition fator M in the head of X must also our in the

sole. Hene suh an M either is twie a omposition fator of X or else

it is a diret summand. If the latter is not the ase, X has a non-trivial

endomorphism.

The following lemma, whih follows from the above remarks, is often

quite useful.

Lemma 5.5.1 Let X be a self dual FG-module with [X;X ℄ = 1. If

every omposition fator of X is self dual, then X is irreduible. 2

5.5.5 Trivial soure modules

The methods desribed above are very powerful in onnetion with the

theory of modules with a trivial soure. These are, by de�nition, in-

deomposable diret summands of permutation modules over F or R.

Every indeomposable FG-module M with trivial soure is liftable to a

uniquely determined trivial soureRG-moduleX (see [93, Setion II.12℄).

This means that M is isomorphi to the FG-module X 


R

FG. Fur-

thermore, [M;M ℄ = [X;X ℄.

Any diret summand of the tensor produt of two trivial soure mod-

ules is again a trivial soure module. If H is a subgroup of G and Y a

trivial soure module of H , than every diret summand of Y

G

is a trivial

soure module.

If B is a blok of G ontaining only real valued ordinary haraters,

then B is alled strongly real. In a strongly real blok every simple

FG-module is self dual. This follows from the surjetivity of the deom-

position homomorphism: every irreduible Brauer harater in suh a

blok is real valued and thus orresponds to a self dual simple module.

LetM be a trivial soure FG-module with trivial soure lift X . Sup-

pose that the ordinary harater of X is irreduible and that M is on-

tained in a strongly real blok. Then M is irreduible by Lemma 5.5.1.

This applies in partiular to permutation modules of doubly transitive

permutation representations on n points if p does not divide n. If 1 + �

is the ordinary harater of a doubly transitive permutation representa-

tion, then � is irreduible modulo p if � is ontained in a strongly real
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blok and if p does not divide 1 + �(1). The sympleti group S

6

(2)

has a doubly transitive permutation representation of degree 28, and,

sine the ordinary harater table of S

6

(2) has only rational entries, the

non-trivial onstituent of the permutation harater remains irreduible

modulo 3.

5.5.6 Latties

An RG-module X , whih is free as R-module, is also alled an RG-

lattie. A sublattie Y of X is alled pure, if the fator module X=Y

again is a lattie. The following result is more or less follore.

Lemma 5.5.2 Let X be an RG-lattie with ordinary harater � +  .

Then there exists a pure sublattie Y � X suh that the harater of Y

is � and the harater of X=Y is  .

Proof. See [93, Theorem I.17.3℄.

This has turned out to very powerful in the theory of bloks with a

yli defet group. But it has also found appliations for non-yli

defet groups, for example in the proof of Theorem 1 of [50℄.

5.5.7 Fong's lemma

Lemma 5.5.3 (Fong's lemma:) Let p = 2. Then every self dual non-

trivial simple FG-module has even dimension.

Proof. Suh a module arries a non-degenerate G-invariant sympleti

form (see [69, Theorem VII.8.13℄).

Let � 2 Irr(G) be real-valued. Then it easily follows from Fong's lemma

that d

�1

� �(1)(mod 2).

For example, onsider the Mathieu group M

11

modulo 2. There are

two haraters of defet 0, namely �

6

and �

7

(in Atlas notation). If we

de�ne

	

1

:= �

7


 �

6

;

	

2

:= �

6


 �

6

;

	

3

:= �

2


 �

6

;
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we obtain the following basi set of projetive haraters for the prinipal

2-blok of M

11

.

	

1

	

2

	

3

1 1 : :

10 : 1 :

10 : 1 :

10 : 1 :

11 1 1 :

44 1 1 1

45 2 1 1

55 2 2 1

Fong's lemma shows that 	

3

is ontained in 	

1

.

5.5.8 Theorem of Benson and Carlson

Theorem 5.5.4 (Benson-Carlson:) Let M , N be indeomposable FG-

modules suh that p j dim

k

M . Then every indeomposable diret sum-

mand of M 
N has dimension divisible by p.

Proof. See [8, Vol. I,Theorem 3.1.9℄,

This is applied, for example, in [59, p. 111℄.

5.5.9 Bloks with yli defet groups

In a blok with a yli defet group one an desribe all indeomposable

FG-modules, one the planar embedded Brauer tree is known (See [1,

Chapter V℄).

This information is usually easier to obtain than that for a blok with

a non-yli defet group. It is very powerful in onnetion with the

Nakayama relations (where we assume that some blok for a subgroup

with a yli defet group is known) and, if some bloks with a yli

defet group for G are known, in onnetion with the adjointness or the

theorem of Benson-Carlson.

This has been applied, for example, for some bloks of the Monster

group in harateristi 5 (see [56, p. 454f℄), and also in the Rudvalis

group modulo 3 [54℄.
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5.5.10 Webb's theorem

Let M be an indeomposable FG-module. The heart of M is the FG-

module H(M) = rad(M)=so(M), where rad(M) denotes the interse-

tion of all maximal submodules ofM and so(M) is the sum of all simple

submodules. It is not diÆult to see that if M is self dual, the same is

true for the heart of M . By lassifying the possible Auslander-Reiten

quivers for a �nite-dimensional group algebra, Webb has shown that

the heart of a projetive indeomposable module of FG has at most 4

indeomposable diret summands. This result has been extended by

Bessenrodt.

Theorem 5.5.5 (Webb, Bessenrodt:) Let P be a projetive indeom-

posable module of FG. Then H(P ) has at most 3 indeomposable diret

summands.

Proof. See [10, Corollary 1.3℄.

We an apply this in some situations as follows.

Lemma 5.5.6 Let B be a strongly real p-blok of G. Let � be a PIM

of B suh that h�;�i < 4 and

X

	2IPr(B)

h�;	i � 6: (5.5)

Then there exists some � 2 IPr(B), � 6= � suh that h�;�i � 2.

Proof. Let P denote the projetive indeomposable FG-module with

harater �. By assumption (5.5), the heart H(P ) of P has at least 4

omposition fators. By Bessenrodt's extension of Webb's theorem,

H(P ) has at most 3 indeomposable diret summands, hene it an-

not be semi-simple. It follows that H(P ) ontains some omposition

fator with multipliity at least 2. Sine h�;�i < 4, this must be a

simple module not isomorphi to P=rad(P ) and the assertion follows.

For example, this lemma an be applied in the ase of the Rudvalis

group modulo 3 [54℄. We �nally proof a lemma in the same spirit as the

one above.
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Lemma 5.5.7 Suppose that G has no fator group of order p. Suppose

also, that the prinipal blok of G is strongly real. Let � denote the

harater of the projetive over P of the trivial FG-module. If h�;�i >

2, then there exists some � 2 IPr(B), � 6= � suh that h�;�i � 2.

Proof. If the trivial FG-module is in the seond Loewy layer of P ,

then G has some fator group of order p (see [93, Corollary I.10.13℄).

It follows that H(P ) is not semi-simple and that it must ontain some

non-trivial omposition fator with multipliity at least 2.



Chapter 6

Calulating the

7-modular deomposition

matries of the Conway

group

The double overing group of the Conway group Co

1

has nine 7-bloks

of defet larger than 0. Seven of these are of defet 1 and their deom-

position matries are given in [56℄. The remaining two bloks are of

maximal defet 2. Eah ontains 29 ordinary and 21 irreduible Brauer

haraters.

6.1 The faithful blok of maximal defet

We start with the blok of maximal defet ontaining faithful haraters,

shortly alled the faithful blok in the following. The proof for the

faithful blok is easier than that for the prinipal blok, and the result

is used in the proof for the prinipal blok.

We start with the set of projetive haraters displayed in Table 6.1.

The origin of the projetive haraters is doumented in table 6.4. The

symbol �

i

denotes the ith harater of Co

2

(in ATLAS ordering), and a

95
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bar denotes the harater times the sign harater of 2� Co

2

.

The two haraters of degree 9 152 000 are omplex onjugates of eah

other. All other haraters in the blok are real. Sine the number of

irreduible Brauer haraters in the blok is 21, there are exatly 19

real valued projetive indeomposable haraters. Eah of �

1

{�

20

, ex-

ept �

12

, ontains one of these. Therefore, �

12

ontains a pair of omplex

onjugate projetive indeomposable haraters. In partiular, the de-

omposition matrix has wedge shape. From this it immediately follows,

that �

2

{�

4

, �

7

, �

9

, �

11

and �

14

{�

20

are projetive indeomposable

haraters.

We now onsider the projetives given in Table 6.2. Table 6.4 gives

their origin and Table 6.3 their deompositions in terms of the projetives

of Table 6.1, the relations.

Using these relations, one an redue the �rst projetives to obtain

a new set of projetives, given in Table 6.5. For example, �

30

shows,

that the PIM �

18

is ontained in �

1

, and �

31

shows, that the PIM

�

3

is ontained in �

1

. This gives �

1

of Table 6.5. All the other new

projetives are obtained by similar arguments. Sine the two haraters

of degree 9 152000 are omplex onjugates of eah other, �

12

ontains

a pair of omplex onjugate PIMs. This immediately determines the

deomposition matrix.

6.2 The prinipal blok

We start with the set of projetives displayed in Table 6.6. The origin of

these is doumented in Table 6.9. It is not too diÆult to hek that �

2

,

�

4

, �

6

{�

9

, �

12

, �

15

and �

19

are projetive indeomposable haraters.

(For example, this an be done by heking that no subsum of these

haraters is zero on all 7-singular lasses.)

We have displayed further projetives in Table 6.7, their origin in

Table 6.9, where the notation �

i;j

stands for the i-th projetive inde-

omposable harater in Blok j. The numbering of the bloks follows

Appendix A.2. The expression of the new projetives in terms of the

�rst set of projetives is given in Table 6.8. Using these relations, one

an redue the basi projetives to obtain a new set of projetives, given

in Table 6.10. The arguments are exatly the same as those used for the

proof of Blok 7.
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One immediately heks that all of these, exept possibly �

10

and

�

14

are haraters of projetive indeomposable modules. Furthermore,

either �

10

is a PIM or �

10

� �

17

is one. Similarly, either �

14

is a PIM

or �

14

� �

20

is one.

Thus we are left with four possible deomposition matries. To deide

whih of these is orret, we reformulate the problem in terms of Brauer

haraters. All irreduible Brauer haraters are known, exept �

17

and

�

20

. The degree of �

10

is 2 038674, that of �

14

is 10 140998. If �

10

is

a PIM, then the degree of �

17

is 62 725301, if �

10

� �

17

is a PIM we

have �

17

(1) = 62 725 301+ 2 038 674 = 64 763 975. Similarly, if �

14

is a

PIM, then the degree of �

20

is 124 375559 if �

14

��

20

is a PIM we have

�

20

(1) = 124 375 559+ 10 140 998 = 134 516 557.

Suppose �rst, that �

10

is a PIM. Consider the irreduible Brauer

harater of Blok 7 of degree 50 207872. Denoting the irreduible

Brauer haraters by their degrees, we obtain

24
 2 038 674 = 48 928 176; (6.1)

24
 50 207 872 = 62 725 301+ 2 038 674+  ; (6.2)

where  is a sum of haraters not in the prinipal blok, namely  =

52 465 644 + 256 168 549 + 309 429 120 + 522 161 640. Let F denote an

algebraially losed �eld of harateristi 7. For two FG-modules M

and N , the dimension of the spae of FG-homomorphisms fromM to N

is denoted by [M;N ℄. With this notation we have,

[24
 2 038 674; 50 207 872℄ = 0;

by equation (6.1), and so,

[2 038 674; 24
 50 207 872℄ = 0: (6.3)

Sine all modules onsidered are self-dual, equation (6.2) implies that

the irreduible 2 038674 is in the sole of 24
 50 207 872, ontraditing

equation (6.3). We have proved that �

10

is deomposable.

Now suppose that �

14

is a PIM. This time we onsider the irreduible

Brauer harater of degree 10 039568 of Blok 7. We obtain:

24
 10 140 998 = 243 383 952;

24
 10 039 568 = 124 375 559+ 10 140 998+  ; (6.4)
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where  is a sum of haraters not in the prinipal blok, namely  =

77 700 854+ 25 892 020+ 2 840 201. However, as above,

[10 140 998; 24
 10 039 568℄ = 0;

ontraditing equation (6.4). We have shown that �

14

deomposes, and

thus ompleted the proof of the deomposition matrix.
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6.3 Tables

Here we ollet the tables of projetive haraters whih are needed in

the previous setions.

Table 6.1: Some projetives in the faithful blok

� : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

24 1 : : : : : : : : : : : : : : : : : : :

2024 : 1 : : : : : : : : : : : : : : : : : :

4576 1 : 1 : : : : : : : : : : : : : : : : :

40480 : 1 : 1 : : : : : : : : : : : : : : : :

95680 1 : : : 1 : : : : : : : : : : : : : : :

299000 1 : 1 : : 1 : : : : : : : : : : : : : :

315744 1 : 1 : : : 1 : : : : : : : : : : : : :

789360 : : : : : 1 : 1 : : : : : : : : : : : :

1937520 1 : : : : : : : 1 : : : : : : : : : : :

5051904 : : : 1 : : : : 1 1 : : : : : : : : : :

7104240 : : : : 1 : : : : : 1 : : : : : : : : :

9152000 : : : : : : : : : : : 1 : : : : : : : :

9152000 : : : : : : : : : : : 1 : : : : : : : :

13156000 : 1 : 1 : : : : : 1 : : 1 : : : : : : :

17050176 : 1 : : : : : : : : 1 : 1 : : : : : : :

19734000 1 : : : : : : : 1 2 : : : 1 : : : : : :

34155000 1 : 1 : : 1 1 : : 2 : : : : 1 : : : : :

49335000 : : : : 2 1 1 : : : : : : : : 1 : : : :

50519040 : : : : : : 1 : : : : 1 1 : : : 1 : : :

67358720 : : : : : 1 : 1 : 3 : 2 : 1 1 : : : : :

210496000 1 : : : 1 1 : : : : 1 : 1 : : : : 1 : :

215547904 : : : : : 1 : 3 : 1 : 6 2 : : : : : 1 :

313524224 1 : : : : : : 2 : 4 : 4 : 1 1 : : : : 1

394680000 : : : : 1 1 1 1 : 2 : 5 1 : 1 1 1 : : 1

485760000 2 : : : 2 2 : 1 : : : 2 : : : 1 : 1 : 1

517899096 : : : : : 1 : 5 : 1 : 11 2 : : : 1 : 1 1

655360000 1 : : : : 2 : 4 : 2 : 8 2 : : : : 1 1 1
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Table 6.2: More projetives in the faithful blok

� : 21 22 23 24 25 26 27 28 29 30 31 32

24 : : : : : : : : : 1 1 :

2024 : : : : : : : : : 1 : :

4576 : : : : : : : : : 2 : :

40480 : : : : : 1 : : : 1 : :

95680 : : : : 1 : : : : 1 1 :

299000 2 : : : : 3 : : : 4 : :

315744 : : : : 1 : : : : 2 : :

789360 2 : : : : 4 : : : 2 : 1

1937520 3 1 : : : 7 : : 1 5 1 :

5051904 3 2 : 1 : 9 1 1 1 4 : 1

7104240 : : 2 : 2 : : : : : : :

9152000 : : : : : : 1 1 1 : : :

9152000 : : : : : : 1 1 1 : : :

13156000 : 1 1 2 : 2 2 2 : 1 : 1

17050176 : : 3 1 1 : 1 1 : 1 : :

19734000 4 5 : 3 : 14 2 1 2 6 1 2

34155000 2 4 : 4 1 7 : 1 1 6 1 1

49335000 : : : : 2 : : : : : 2 :

50519040 : : : : 1 : 2 1 : : : :

67358720 3 7 : 6 : 14 3 3 4 5 1 3

210496000 : : 6 1 2 : 4 3 : : 4 :

215547904 : : 2 1 : : 11 6 1 : 1 1

313524224 1 10 1 10 : 13 8 7 5 4 6 4

394680000 : 6 1 7 1 5 8 7 4 2 7 1

485760000 : 2 4 3 1 1 7 5 1 1 11 :

517899096 : 2 2 3 : 2 18 11 4 : 5 2

655360000 : 3 6 5 : 2 19 12 2 : 9 2
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Table 6.3: Relations in the faithful blok

� : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

�

21

: : : : : 2 : : 3 : : : : 1 : �2 : �2 �2 :

�

22

: : : : : : : : 1 1 : : : 2 2 : : : �1 2

�

23

: : : : : : : : : : 2 : 1 : : : �1 3 : 1

�

24

: : : : : : : : : 1 : : 1 1 2 : �1 : �2 3

�

25

: : : : 1 : 1 : : : 1 : : : : �1 : : : :

�

26

: : : 1 : 3 : 1 7 1 : : : 5 2 �3 : �3 �7 :

�

27

: : : : : : : : : 1 : 1 1 : �2 : : 3 2 2

�

28

: : : : : : : : : 1 : 1 1 �1 �1 : �1 2 �3 1

�

29

: : : : : : : : 1 : : 1 : 1 1 : �1 : �5 �1

�

30

1 1 1 : : 2 : : 4 : : : : 1 2 �2 : �3 �2 :

�

31

1 : �1 : : : : : : : : : : : 1 2 : 3 1 4

�

32

: : : : : : : 1 : 1 : : : : �1 : : : �3 �1
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Table 6.4: Origin of projetive haraters of the faithful blok

Char. Origin

�

1

: Ind

2xCo2

(

�

�

2

+

�

�

21

)

�

2

: Ind

2xCo2

(

�

�

5

)

�

3

: �

3


 �

111

�

4

: Ind

2xCo2

(

�

�

9

)

�

5

: Ind

2xCo2

(

�

�

18

)

�

6

: Ind

2xCo2

(

�

�

15

+

�

�

24

)

�

7

: �

104


 �

16

�

8

: Ind

2xCo2

(

�

�

22

+

�

�

23

+

�

�

24

)

�

9

: �

102


 �

36

�

10

: �

2


 �

141

�

11

: �

102


 �

39

�

12

: �

5


 �

118

�

13

: �

104


 �

33

�

14

: �

102


 �

49

�

15

: �

2


 �

127

�

16

: �

3


 �

118

Char. Origin

�

17

: �

2


 �

118

�

18

: �

2


 �

128

�

19

: �

2


 �

125

�

20

: �

102


 �

75

�

21

: �

2


 �

119

�

22

: �

2


 �

147

�

23

: �

2


 �

148

�

24

: �

2


 �

149

�

25

: �

3


 �

131

�

26

: �

4


 �

132

�

27

: Ind

2xCo2

(

�

�

50

)

�

28

: �

3


 �

156

�

29

: �

4


 �

127

�

30

: �

7


 �

111

�

31

: Ind

2xCo2

(

�

�

1

+

�

�

44

)

�

32

: �

3


 �

141
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Table 6.5: Re�ned projetives in the faithful blok

� : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

24 1 : : : : : : : : : : : : : : : : : : :

2024 : 1 : : : : : : : : : : : : : : : : : :

4576 : : 1 : : : : : : : : : : : : : : : : :

40480 : 1 : 1 : : : : : : : : : : : : : : : :

95680 1 : : : 1 : : : : : : : : : : : : : : :

299000 : : 1 : : 1 : : : : : : : : : : : : : :

315744 : : 1 : : : 1 : : : : : : : : : : : : :

789360 : : : : : 1 : 1 : : : : : : : : : : : :

1937520 1 : : : : : : : 1 : : : : : : : : : : :

5051904 : : : 1 : : : : 1 1 : : : : : : : : : :

7104240 : : : : 1 : : : : : 1 : : : : : : : : :

9152000 : : : : : : : : : : : 1 : : : : : : : :

9152000 : : : : : : : : : : : 1 : : : : : : : :

13156000 : 1 : 1 : : : : : 1 : : 1 : : : : : : :

17050176 : 1 : : : : : : : : 1 : 1 : : : : : : :

19734000 1 : : : : : : : 1 1 : : : 1 : : : : : :

34155000 : : 1 : : 1 1 : : : : : : : 1 : : : : :

49335000 : : : : 1 : 1 : : : : : : : : 1 : : : :

50519040 : : : : : : 1 : : : : : : : : : 1 : : :

67358720 : : : : : 1 : 1 : : : 2 : 1 1 : : : : :

210496000 : : : : 1 : : : : : 1 : 1 : : : : 1 : :

215547904 : : : : : : : : : : : 1 1 : : : : : 1 :

313524224 1 : : : : : : 1 : 1 : 3 : 1 1 : : : : 1

394680000 : : : : : : 1 : : : : 3 : : 1 1 1 : : 1

485760000 1 : : : 1 : : : : : : 1 : : : 1 : 1 : 1

517899096 : : : : : : : 1 : : : 4 : : : : 1 : 1 1

655360000 : : : : : : : : : 1 : 2 1 : : : : 1 1 1
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Table 6.6: Basi set of projetives of the prinipal blok

� : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 : : : : : : : : : : : : : : : : : : : :

276 1 1 : : : : : : : : : : : : : : : : : : :

299 1 : 1 : : : : : : : : : : : : : : : : : :

17250 1 : 1 1 : : : : : : : : : : : : : : : : :

80730 1 : : : 1 : : : : : : : : : : : : : : : :

94875 1 1 : : : 1 : : : : : : : : : : : : : : :

822250 1 : 1 : : : 1 : : : : : : : : : : : : : :

871884 1 : : : : : : 1 : : : : : : : : : : : : :

1821600 1 1 : 1 1 : : : 1 : : : : : : : : : : : :

2055625 : : : 1 : : : : : 1 : : : : : : : : : : :

9221850 1 : : : : 1 1 : : : 1 : : : : : : : : : :

16347825 : : : 1 2 : : : 1 : : 1 : : : : : : : : :

21528000 1 : : : : 1 : 1 : : : : 1 : : : : : : : :

21579129 : : : : : : : : : : : : : 1 1 : : : : : :

24667500 1 : : : 1 : : : : : : 1 : 1 : : : : : : :

31574400 2 : : : : : : 1 : : : : 1 1 : : : : : : :

57544344 2 : 1 1 : : 1 : : : 1 : : 1 : 1 : : : : :

66602250 : : : 2 1 : : : 1 1 : : : 1 : : 2 1 1 : :

85250880 2 : 1 2 : : : : : 1 : : : 2 : 1 1 : : : :

150732800 : : : 1 : : : : : 1 : : 1 1 : 1 1 1 : 1 1

163478250 3 1 : 1 : 1 : : : : 1 : 1 1 : 1 1 : : 1 1

191102976 1 : : 1 : : : : : : : 1 1 2 1 1 1 : : 1 1

207491625 1 : : 1 : : : : : 1 : : 1 3 : : 3 1 1 1 :

215547904 1 1 : 2 1 : : : 1 1 : 1 : 2 : 1 3 1 1 1 1

219648000 : : : : : : : : : : : : 2 1 1 : 1 1 : 2 1

299710125 2 : : 1 : : : : : : 1 : 2 3 : 1 2 1 : 2 1

326956500 1 : : 1 : : : : : 1 1 : 1 3 1 1 3 1 1 2 1



TABLES 105

Table 6.7: More projetives in the prinipal blok

� : 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

1 1 1 : : 1 : : : : : : : : : : :

276 : : : : : : : : : : : : : : : :

299 : 2 : : 1 : : : : : : : : : : :

17250 1 2 : : 1 : 1 : : : : : : : : :

80730 2 1 : : 1 : 2 : : : : : : : : :

94875 : 2 : : : : : : : : : : : : : :

822250 : 8 : : 1 : : : : : : : : : : 1

871884 4 6 : : 1 : : : : : : : : : : :

1821600 : 1 : : : : 1 : : : : : 1 : : :

2055625 3 : : : : : 1 : : : : : : : : :

9221850 : 11 : : : : : : : : 1 2 : 1 2 1

16347825 4 1 1 1 1 : 3 : : 1 : : 1 : : :

21528000 5 13 : : : : : : : : 1 2 : 1 2 1

21579129 1 : 1 1 : 1 : 1 1 : : : : 1 : :

24667500 6 1 2 2 2 1 2 1 : 1 : : : : : :

31574400 7 12 1 1 1 1 : 1 : : 1 2 : 1 2 1

57544344 5 19 : 1 2 1 : 1 : : 3 3 : 2 2 2

66602250 10 1 2 3 2 2 2 : : 1 : : 1 : : :

85250880 14 10 1 3 4 1 1 3 : 1 3 1 : 2 1 1

150732800 13 12 3 2 1 2 : 1 : : 2 1 : 2 : 1

163478250 5 18 3 1 1 1 : 2 : : 4 4 1 3 4 1

191102976 9 13 5 3 2 2 : 3 1 1 3 2 1 3 2 1

207491625 20 1 7 5 4 3 1 4 2 2 1 : 1 2 1 :

215547904 15 8 6 5 4 3 1 2 : 2 2 : 2 1 : :

219648000 10 5 7 1 : 2 : 2 3 : : : 1 3 : :

299710125 21 16 8 4 3 3 : 5 2 1 4 3 1 5 3 1

326956500 16 11 9 4 3 4 : 4 3 1 3 2 2 4 2 :
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Table 6.8: Relations in the prinipal blok

� : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

�

22

1 �1 �1 1 1 : : 3 �2 2 �1 3 1 1 : 3 4 7 �9 2 �8

�

23

1 �1 1 : : 2 6 5 1 : 2 : 5 : : 8 �1 : 2 �4 4

�

24

: : : : : : : : : : : 1 : 1 : �1 : : 1 3 :

�

25

: : : : : : : : : : : 1 : 1 : : 1 1 �1 �1 :

�

26

1 �1 : : : : : : : : �1 1 �1 : : 1 1 1 �1 1 �2

�

27

: : : : : : : : : : : : : 1 : : �1 1 2 : 1

�

28

: : : 1 2 : : : �2 : : : : : : �1 : : : : :

�

29

: : : : : : : : : : : : : 1 : : 1 �1 �2 1 �1

�

30

: : : : : : : : : : : : : : 1 : : : : 2 �2

�

31

: : : : : : : : : : : 1 : : : : 1 : �1 : �1

�

32

: : : : : : : : : : 1 : 1 : : 2 1 �1 �1 �1 :

�

33

: : : : : : : : : : 2 : 2 : : 1 : �1 1 �2 1

�

34

: : : : : : : : 1 : : : : : : : : �1 1 1 :

�

35

: : : : : : : : : : 1 : 1 : 1 1 1 : �2 : �1

�

36

: : : : : : : : : : 2 : 2 : : : 1 �2 : �2 1

�

37

: : : : : : 1 : : : : : 1 : : 1 : : : �1 :
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Table 6.9: Origin of projetive haraters of the prinipal blok

Char. Origin

�

1

: �

102


 �

1;7

�

2

: Ind

2xCo2

(�

3

+ �

16

)

�

3

: �

102


 �

1;8

�

4

: �

102


 �

7;7

�

5

: �

2


 �

39

�

6

: �

102


 �

4;7

�

7

: �

102


 �

119

�

8

: �

2


 �

22

�

9

: �

2


 �

32

�

10

: �

6


 �

17

�

11

: �

102


 �

141

�

12

: �

4


 �

33

�

13

: �

2


 �

44

�

14

: Ind

2xCo2

(�

43

)

�

15

: �

4


 �

26

�

16

: �

102


 �

149

�

17

: �

3


 �

73

�

18

: �

4


 �

32

�

19

: (�

2


 �

70

)=2

Char. Origin

�

20

: �

102


 �

161

�

21

: �

2


 �

46

�

22

: �

2+

16

�

23

: �

2+

112

�

24

: �

7


 �

33

�

25

: Ind

2xCo2

(�

45

)

�

26

: Ind

2xCo2

(�

1

+ �

44

)

�

27

: Ind

2xCo2

(�

27

+ �

34

)

�

28

: Ind

2xCo2

(�

6

+ �

17

)

�

29

: �

102


 �

21;7

�

30

: �

102


 �

20;7

�

31

: �

102


 �

19;7

�

32

: �

102


 �

16;7

�

33

: �

102


 �

15;7

�

34

: �

102


 �

14;7

�

35

: �

102


 �

13;7

�

36

: �

102


 �

10;7

�

37

: �

102


 �

3;8
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Table 6.10: Re�ned basi set of projetives of the prinipal blok

� : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 : : : : : : : : : : : : : : : : : : : :

276 : 1 : : : : : : : : : : : : : : : : : : :

299 : : 1 : : : : : : : : : : : : : : : : : :

17250 : : 1 1 : : : : : : : : : : : : : : : : :

80730 1 : : : 1 : : : : : : : : : : : : : : : :

94875 : 1 : : : 1 : : : : : : : : : : : : : : :

822250 : : 1 : : : 1 : : : : : : : : : : : : : :

871884 1 : : : : : : 1 : : : : : : : : : : : : :

1821600 : 1 : : : : : : 1 : : : : : : : : : : : :

2055625 : : : 1 : : : : : 1 : : : : : : : : : : :

9221850 : : : : : 1 1 : : : 1 : : : : : : : : : :

16347825 : : : : 1 : : : 1 : : 1 : : : : : : : : :

21528000 : : : : : 1 : 1 : : : : 1 : : : : : : : :

21579129 : : : : : : : : : : : : : 1 1 : : : : : :

24667500 1 : : : 1 : : : : : : 1 : 1 : : : : : : :

31574400 1 : : : : : : 1 : : : : 1 1 : : : : : : :

57544344 : : 1 : : : 1 : : : 1 : : : : 1 : : : : :

66602250 : : : 1 : : : : 1 1 : : : : : : 1 : : : :

85250880 : : 1 1 : : : : : 1 : : : : : 1 : 1 : : :

150732800 : : : : : : : : : 1 : : : : : 1 : : 1 : :

163478250 : 1 : : : 1 : : : : 1 : 1 1 : : : : : 1 :

191102976 : : : : : : : : : : : 1 1 2 1 : : : : 1 :

207491625 : : : 1 : : : : : 1 : : : : : : 1 1 : : 1

215547904 : 1 : : : : : : 1 1 : 1 : 1 : : 1 : : 1 :

219648000 : : : : : : : : : : : : : : 1 : : : 1 : 1

299710125 : : : : : : : : : : 1 : : : : 1 : 1 1 : 1

326956500 : : : : : : : : : 1 1 : : 1 1 : 1 : : 1 1
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A.1 The 5-deomposition numbers of Co

2

1 1 : : : : : : : : : : : : : : :

23 : 1 : : : : : : : : : : : : : :

253 : : 1 : : : : : : : : : : : : :

1771 : : : 1 : : : : : : : : : : : :

2024 1 : : : 1 : : : : : : : : : : :

2277 : 1 : : : 1 : : : : : : : : : :

7084 : : : 1 : : 1 : : : : : : : : :

10395 : : : : : : : 1 : : : : : : : :

10395 : : : : : : : 1 : : : : : : : :

31878 : : : : : 1 : : 1 : : : : : : :

37422 : : 1 : : : : : : 1 : : : : : :

129536 : : 1 1 : : 1 : : : 1 : : : : :

184437 1 : : : 1 : 1 : : : : 1 : : : :

212520 : : : : : 2 : : 1 : : : 1 : : :

226688 1 : : : 1 : : 1 : 1 : 1 : : : :

239085 : : : : : : : : : : : : : 1 : :

239085 : : : : : : : : : : : : : 1 : :

245916 : : : : 1 : : : 1 1 : 1 : : : :

312984 : : : 1 : : 2 : : : 1 : 1 : : :

368874 : 1 1 : : : : 1 : : 1 : : : 1 :

430353 : : : : : 1 2 : : : : : 1 1 : :

637560 1 : : : 1 : 1 1 1 : : 2 : : 1 :

1291059 : : : : : 1 : : 1 1 : 1 : : : 1

1835008 : : : : : : 1 1 : : 1 1 : 1 1 1

1943040 1 : 1 : : : 1 2 : 1 2 2 : : 1 1

2040192 : : : : : 1 2 : 1 : 1 1 1 1 1 1

2072576 : 1 : : : 1 2 : : : 1 : 1 2 1 1

109
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A.2 The 7-deomposition numbers of 2Co

1

In this setion we give the 7-modular deomposition matries for the

two bloks of maximal defet of 2Co

1

. The deomposition numbers are

followed by tables giving the degrees of the irreduible Brauer haraters

as well as the prime fatorizations of these degrees. The deomposition

matries for the bloks of non-maximal defet an be found in [56℄.

A.2.1 Deomposition matrix of Blok 1

� : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 : : : : : : : : : : : : : : : : : : : :

276 : 1 : : : : : : : : : : : : : : : : : : :

299 : : 1 : : : : : : : : : : : : : : : : : :

17250 : : 1 1 : : : : : : : : : : : : : : : : :

80730 1 : : : 1 : : : : : : : : : : : : : : : :

94875 : 1 : : : 1 : : : : : : : : : : : : : : :

822250 : : 1 : : : 1 : : : : : : : : : : : : : :

871884 1 : : : : : : 1 : : : : : : : : : : : : :

1821600 : 1 : : : : : : 1 : : : : : : : : : : : :

2055625 : : : 1 : : : : : 1 : : : : : : : : : : :

9221850 : : : : : 1 1 : : : 1 : : : : : : : : : :

16347825 : : : : 1 : : : 1 : : 1 : : : : : : : : :

21528000 : : : : : 1 : 1 : : : : 1 : : : : : : : :

21579129 : : : : : : : : : : : : : 1 1 : : : : : :

24667500 1 : : : 1 : : : : : : 1 : 1 : : : : : : :

31574400 1 : : : : : : 1 : : : : 1 1 : : : : : : :

57544344 : : 1 : : : 1 : : : 1 : : : : 1 : : : : :

66602250 : : : 1 : : : : 1 : : : : : : : 1 : : : :

85250880 : : 1 1 : : : : : 1 : : : : : 1 : 1 : : :

150732800 : : : : : : : : : 1 : : : : : 1 : : 1 : :

163478250 : 1 : : : 1 : : : : 1 : 1 : : : : : : 1 :

191102976 : : : : : : : : : : : 1 1 1 1 : : : : 1 :

207491625 : : : 1 : : : : : : : : : : : : 1 1 : : 1

215547904 : 1 : : : : : : 1 : : 1 : : : : 1 : : 1 :

219648000 : : : : : : : : : : : : : : 1 : : : 1 : 1

299710125 : : : : : : : : : : 1 : : : : 1 : 1 1 : 1

326956500 : : : : : : : : : : 1 : : : 1 : 1 : : 1 1
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A.2.2 Deomposition matrix of Blok 7

� : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

24 1 : : : : : : : : : : : : : : : : : : : :

2024 : 1 : : : : : : : : : : : : : : : : : : :

4576 : : 1 : : : : : : : : : : : : : : : : : :

40480 : 1 : 1 : : : : : : : : : : : : : : : : :

95680 1 : : : 1 : : : : : : : : : : : : : : : :

299000 : : 1 : : 1 : : : : : : : : : : : : : : :

315744 : : 1 : : : 1 : : : : : : : : : : : : : :

789360 : : : : : 1 : 1 : : : : : : : : : : : : :

1937520 1 : : : : : : : 1 : : : : : : : : : : : :

5051904 : : : 1 : : : : 1 1 : : : : : : : : : : :

7104240 : : : : 1 : : : : : 1 : : : : : : : : : :

9152000 : : : : : : : : : : : 1 : : : : : : : : :

9152000 : : : : : : : : : : : : 1 : : : : : : : :

13156000 : 1 : 1 : : : : : 1 : : : 1 : : : : : : :

17050176 : 1 : : : : : : : : 1 : : 1 : : : : : : :

19734000 1 : : : : : : : 1 1 : : : : 1 : : : : : :

34155000 : : 1 : : 1 1 : : : : : : : : 1 : : : : :

49335000 : : : : 1 : 1 : : : : : : : : : 1 : : : :

50519040 : : : : : : 1 : : : : : : : : : : 1 : : :

67358720 : : : : : 1 : 1 : : : 1 1 : 1 1 : : : : :

210496000 : : : : 1 : : : : : 1 : : 1 : : : : 1 : :

215547904 : : : : : : : : : : : : : 1 : : : : : 1 :

313524224 1 : : : : : : 1 : 1 : 1 1 : 1 1 : : : : 1

394680000 : : : : : : 1 : : : : 1 1 : : 1 1 1 : : 1

485760000 1 : : : 1 : : : : : : : : : : : 1 : 1 : 1

517899096 : : : : : : : 1 : : : 1 1 : : : : 1 : 1 1

655360000 : : : : : : : : : 1 : : : 1 : : : : 1 1 1
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A.2.3 Degrees of irreduible Brauer haraters

The table on the left hand side lists the degrees of the irreduible Brauer

haraters of the prinipal blok, the other table those of Blok 7.

Char. Degree Fators

�

1

1 1

�

2

276 2

2

3 23

�

3

299 13 23

�

4

16951 11 23 67

�

5

80729 11 41 179

�

6

94599 3

2

23 457

�

7

821951 13 23 2749

�

8

871883 871883

�

9

1821324 2

2

3 23 6599

�

10

2038674 2 3 11 17 23 79

�

11

8305300 2

2

5

2

23

2

157

�

12

14445772 2

2

11 569 577

�

13

20561518 2 607 16937

�

14

10140998 2 7 227 3191

�

15

11438131 11438131

�

16

48416794 2 23 37 28447

�

17

64763975 5

2

23 163 691

�

18

34778162 2 23 83 9109

�

19

100277332 2

2

23 733 1487

�

20

134516557 7 19216651

�

21

107932537 23 43 109133

Degree Fators

24 2

3

3

2024 2

3

11 23

4576 2

5

11 13

38456 2

3

11 19 23

95656 2

3

11 1087

294424 2

3

13 19 149

311168 2

7

11 13 17

494936 2

3

13 4759

1937496 2

3

3 11 41 179

3075952 2

4

11 17477

7008584 2

3

11 73 1091

9152000 2

9

5

3

11 13

9152000 2

9

5

3

11 13

10039568 2

4

7 11 29 281

14720528 2

4

283 3251

33544832 2

7

262069

48928176 2

4

3

2

11 17 23 79

50207872 2

7

11 13

2

211

193352192 2

9

11

2

3121

205508336 2

4

11

2

101 1051

243383952 2

4

3 7 227 3191
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B.1 The 5-modular harater table of Co
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42 743 41 1 46 15 3 12 7

305421312000 178240 287680 474560 6560 5520 096576 2880 3728

p power A A A A A A B B

p' part A A A A A A A A

ind 1A 2A 2B 2C 3A 3B 4A 4B 4C

+ 1 1 1 1 1 1 1 1 1

+ 23 -9 7 -1 -4 5 7 -5 3

+ 253 29 13 -11 10 10 29 9 1

+ 275 51 35 11 5 14 19 15 7

+ 1771 -21 -21 11 -11 16 91 -5 -5

+ 2023 231 103 39 -2 25 7 23 23

+ 2254 -210 126 -10 13 31 14 -30 10

+ 4025 -231 105 1 -25 29 105 -35 5

+ 5313 -63 -63 33 21 3 49 1 1

o 9625 -455 105 -15 40 -5 -7 5 29

o 9625 -455 105 -15 40 -5 -7 5 29

+ 10395 315 -21 -45 27 0 -21 -9 15

+ 12650 554 330 26 -40 59 -6 50 2

+ 23000 600 280 120 50 5 184 40 8

+ 29624 -168 392 -16 32 14 -56 4 -36

+ 31625 265 -55 -55 35 35 377 25 -7

+ 31625 1385 505 145 35 35 41 45 53

+ 37169 1105 449 -55 -10 71 97 77 5

+ 44275 -1869 595 -29 -5 94 35 -85 59

+ 63250 -110 210 -110 -65 -20 322 -30 2

113
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o 91125 405 -315 45 0 0 -27 -15 9

o 91125 405 -315 45 0 0 -27 -15 9

+ 113575 903 -105 143 40 -23 119 -5 3

+ 122199 567 -441 -33 -84 15 343 -5 3

+ 173075 -973 35 43 5 -58 483 15 7

+ 177100 2828 364 188 -20 -29 -84 -28 20

+ 178388 -1932 420 76 53 44 -28 -48 -24

+ 221375 4095 735 15 -160 -25 -49 -25 87

+ 236004 -92 -188 -108 51 -30 20 -20 -4

+ 239085 -2835 -147 45 -108 0 -147 45 45

+ 253000 2120 -440 200 -125 10 104 -40 24

+ 284625 -3855 1505 -55 -90 45 273 -115 5

+ 354200 -4872 840 -32 -40 -58 -56 60 36

+ 385825 3457 1105 233 -5 -23 -15 5 -19

+ 442750 -770 1470 -130 -185 40 -210 30 -66

+ 462000 5040 560 -400 30 120 112 80 16

+ 664125 -1155 -35 -275 195 -30 637 85 5

+ 664125 -1155 -35 365 195 -30 -35 5 -11

+ 664125 2205 1645 -315 195 -30 77 -15 -39

+ 853875 7155 435 -45 135 0 -237 -45 51

+ 1044912 -720 496 -80 -15 -87 -160 16 -80

+ 1288000 -2240 -2240 320 100 100 448 0 0

+ 1771000 -12040 1400 -200 205 -20 -168 40 40

+ 1771000 1400 -840 -40 -200 115 -168 40 -56

+ 1992375 3255 -1225 215 180 45 -441 -25 -25

+ 2004750 8910 -1170 -450 0 0 -162 -90 54

+ 2095875 -3645 -2205 -45 0 0 -189 75 27
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4

9152 6144 6144 1280 5760 5184 4320 3456 576 288 56 768 768

A B B C AB AA BA BA BB BC A A C

A A A A AB AA BA BA BB BC A A A

4D 4E 4F 4G 6A 6B 6C 6D 6E 6F 7A 8A 8B

1 1 1 1 1 1 1 1 1 1 1 1 1

-1 3 -1 -1 4 0 3 -3 1 -1 2 -1 -3

5 1 -3 1 10 2 2 2 -2 -2 1 -3 3

-5 7 3 -1 5 -3 6 6 2 2 2 3 5

-5 -5 3 -1 21 -3 -6 0 0 2 0 3 -1

7 7 7 -1 -2 6 3 9 1 3 0 -1 3

6 10 -2 2 -3 -3 3 -9 3 -1 0 -2 -4

1 5 1 1 15 3 9 -3 -3 1 0 1 -5

17 1 -7 -3 -3 9 -3 3 3 -3 0 1 1

1 -3 -7 5 0 4 -5 -5 3 3 0 1 3

1 -3 -7 5 0 4 -5 -5 3 3 0 1 3

19 -1 3 -5 3 -9 0 0 0 0 0 3 1

10 18 2 6 0 -4 -1 11 3 -1 1 2 6

24 8 8 0 10 6 15 -3 1 3 -2 8 0

-16 12 0 -8 8 12 -18 6 2 2 0 0 2

-7 -7 1 5 35 -5 -5 -5 -1 -1 -1 -7 1

1 5 25 5 -5 -1 5 11 7 1 -1 1 -1

-23 5 -7 -7 -10 -2 7 7 -1 -1 -1 1 3

-13 11 -5 -1 -5 3 6 -18 -2 -2 0 3 -5

2 2 10 -10 15 7 10 4 0 -2 -2 -6 2
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-51 9 -3 5 0 0 0 0 0 0 -1 -3 3

-51 9 -3 5 0 0 0 0 0 0 -1 -3 3

-17 3 -1 7 0 12 3 -15 -3 -1 0 -1 -7

-17 3 7 3 -12 0 -9 -9 3 3 0 -1 -3

-21 7 -21 3 5 -19 2 14 2 -2 0 3 5

-4 -12 -4 12 4 -16 -1 -13 -5 -1 0 -4 -8

12 -24 12 4 -3 -15 12 12 -12 4 0 4 2

-1 -9 7 -5 0 0 -15 15 3 -3 0 -1 -9

36 12 12 -8 -5 7 4 10 -2 0 -1 -4 8

-19 -3 -3 5 12 0 0 0 0 0 0 -3 -3

40 8 -24 0 -5 23 -10 2 -2 2 -1 0 4

-7 5 1 5 -10 6 15 -3 5 -1 -2 -7 3

32 -12 -16 -8 0 -12 -12 6 6 4 0 0 10

9 -19 25 -7 -5 19 7 -23 1 -1 -1 1 -5

46 14 6 10 15 -5 -20 -8 0 -4 0 6 2

48 -16 -16 0 -10 18 0 0 -4 -4 0 0 0

13 5 -3 5 -5 15 0 -6 -2 4 0 -3 -7

45 5 -3 5 -5 15 0 -6 -2 -4 0 -3 5

37 -7 -11 5 -5 -9 0 18 10 0 0 -3 -5

-77 -13 3 -5 15 27 0 0 0 0 1 3 -1

-32 0 -8 -4 1 9 9 9 1 1 1 8 4

-64 0 0 0 -20 -8 -20 4 4 -4 0 0 0

-40 -8 24 0 5 -7 -10 -4 -4 -2 0 0 4

-8 -24 8 0 0 -4 5 -13 3 5 0 -8 0

39 -9 -17 -5 20 -12 15 -3 5 -1 0 -1 3

-18 6 6 10 0 0 0 0 0 0 -1 6 6

51 27 3 -5 0 0 0 0 0 0 -2 3 -9
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512 512 256 64 54 11 864 288 288 288 96 96 48

D D C E A A BA AC DA EC BD EB AE

A A A A A A AA AC BA BC AD BB AE

8C 8D 8E 8F 9A 11A 12A 12B 12C 12D 12E 12F 12G

1 1 1 1 1 1 1 1 1 1 1 1 1

3 -1 1 1 2 1 -2 0 1 -3 2 1 0

5 1 -1 -1 1 0 2 -2 2 4 2 0 -2

3 -1 1 1 2 0 1 1 -2 4 1 0 1

7 -1 -1 -1 -2 0 1 1 4 -2 1 -2 1

-1 -1 3 -1 -2 -1 -2 2 1 -1 -2 -1 -2

-2 2 0 0 -2 -1 5 1 -1 1 -3 -3 1

5 1 -1 -1 2 -1 -3 -1 -3 -7 1 1 -1

-3 5 1 1 0 0 -5 1 -5 1 -1 1 1

1 -3 -1 -1 1 0 2 -4 -1 -1 -2 -1 0

1 -3 -1 -1 1 0 2 -4 -1 -1 -2 -1 0

-1 3 -3 1 0 0 -3 3 0 0 1 0 -1

-2 -2 -2 2 -1 0 -6 -4 3 -1 -2 -1 0

0 0 0 0 2 -1 4 2 1 5 0 1 2

-4 0 -2 2 2 1 -2 0 -2 0 2 4 0

5 -3 1 1 -1 0 -1 -1 -1 5 -1 1 -1

1 5 3 -1 -1 0 5 -1 -1 -1 1 3 -1

-3 1 -1 -1 -1 0 -2 2 -5 -1 -2 -1 2

-1 -1 3 -1 -2 0 -1 -1 2 2 -1 2 -1

-2 6 2 2 1 0 7 -1 4 -4 -1 0 -1
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1 5 -1 -1 0 1 0 0 0 0 0 0 0

1 5 -1 -1 0 1 0 0 0 0 0 0 0

-5 7 -3 -3 -2 0 2 0 5 -3 -2 1 0

-9 -5 1 1 0 0 10 0 -5 -3 -2 1 0

-9 -5 1 1 -1 1 -3 1 6 4 -3 0 1

4 -4 0 0 1 0 6 -4 3 -1 2 -1 0

8 -4 -2 -2 2 1 -1 -3 8 0 3 0 -3

3 3 -1 -1 2 0 -4 0 -1 3 -4 -1 0

0 0 0 -4 -3 -1 -7 -1 2 2 -3 -2 3

-3 -3 -3 1 0 0 6 0 0 0 2 0 0

0 0 4 0 1 0 5 3 2 0 1 -4 -1

1 -3 -1 -1 0 0 -6 2 -3 -1 2 -1 2

4 0 -2 2 2 0 -2 0 -2 0 2 0 0

5 1 -1 -1 1 0 3 -1 -3 -1 3 -1 -1

-6 2 2 -2 1 0 -3 3 0 0 1 0 -1

0 0 0 0 0 0 4 -2 4 -2 0 2 2

-3 5 1 1 0 0 -11 -1 -2 2 1 -2 -1

5 -3 -3 1 0 0 1 7 -2 -2 -3 2 -1

1 -3 -1 -1 0 0 5 3 2 0 1 0 -1

-5 -5 -1 -1 0 0 -3 3 0 0 1 0 -1

12 4 4 0 0 0 -7 1 5 1 1 1 -3

0 0 0 0 1 -1 -2 0 4 0 2 0 0

0 0 4 0 1 0 3 1 0 -2 -1 -2 1

0 0 0 0 1 0 -6 4 3 1 -2 1 0

-5 3 3 -1 0 0 0 -4 -3 -1 0 -1 0

2 2 -2 2 0 0 0 0 0 0 0 0 0

3 -5 -1 -1 0 1 0 0 0 0 0 0 0
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48 56 28 28 32 32 18 23 23 24 24 28

EF AA AB AB D C AB A A CA BB AA

BF AA AB AB A A AA A A BA AB AA

12H 14A 14B C** 16A 16B 18A 23A B** 24A 24B 28A

1 1 1 1 1 1 1 1 1 1 1 1

-1 -2 0 0 1 -1 0 0 0 -1 0 0

0 1 -1 -1 1 -1 -1 0 0 0 0 1

0 2 0 0 -1 1 0 -1 -1 0 -1 -2

0 0 0 0 1 1 0 0 0 0 -1 0

1 0 -2 -2 -1 -1 0 -1 -1 -1 0 0

1 0 0 0 -2 0 0 0 0 1 -1 0

1 0 0 0 -1 1 0 0 0 1 1 0

-1 0 0 0 -1 -1 0 0 0 1 1 0

-1 0 0 0 1 -1 1 b23 ** 1 0 0

-1 0 0 0 1 -1 1 ** b23 1 0 0

0 0 0 0 1 -1 0 -1 -1 0 1 0

-1 1 1 1 0 0 -1 0 0 -1 0 1

-1 -2 0 0 0 0 0 0 0 -1 0 2

0 0 0 0 2 0 0 0 0 0 2 0

1 -1 1 1 -1 -1 1 0 0 -1 1 -1

1 -1 1 1 1 -1 -1 0 0 1 -1 -1

-1 -1 1 1 -1 1 1 1 1 1 0 -1

-2 0 0 0 1 1 0 0 0 0 1 0

-2 2 0 0 0 0 1 0 0 0 -1 0
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0 -1 i7 -i7 -1 1 0 -1 -1 0 0 1

0 -1 -i7 i7 -1 1 0 -1 -1 0 0 1

-1 0 0 0 1 -1 0 1 1 -1 2 0

1 0 0 0 -1 1 0 0 0 -1 0 0

0 0 0 0 1 -1 -1 0 0 0 -1 0

-1 0 0 0 0 0 -1 0 0 -1 -2 0

0 0 0 0 2 0 0 0 0 -2 -1 0

1 0 0 0 1 1 0 0 0 -1 0 0

0 -1 1 1 -2 2 1 1 1 2 -1 -1

0 0 0 0 1 1 0 0 0 0 0 0

0 -1 1 1 0 0 -1 0 0 0 1 -1

1 2 0 0 1 -1 0 0 0 -1 0 0

2 0 0 0 -2 0 0 0 0 0 -2 0

1 -1 -1 -1 -1 1 1 0 0 1 1 -1

0 0 0 0 0 0 1 0 0 0 -1 0

2 0 0 0 0 0 0 -1 -1 0 0 0

0 0 0 0 1 1 0 0 0 0 -1 0

0 0 0 0 1 1 0 0 0 0 -1 0

-2 0 0 0 -1 1 0 0 0 0 1 0

0 1 1 1 -1 -1 0 0 0 0 -1 1

1 1 -1 -1 2 -2 0 -1 -1 -1 1 1

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 -1 0 0 0 1 0

-1 0 0 0 0 0 -1 0 0 1 0 0

1 0 0 0 1 1 0 0 0 -1 0 0

0 -1 -1 -1 0 0 0 1 1 0 0 -1

0 2 0 0 -1 -1 0 0 0 0 0 0
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